Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)
Joris Nieuwveld and Joël Ouaknine. On Expansions of Monadic Second-Order Logic with Dynamical Predicates. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 80:1-80:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{nieuwveld_et_al:LIPIcs.MFCS.2025.80,
author = {Nieuwveld, Joris and Ouaknine, Jo\"{e}l},
title = {{On Expansions of Monadic Second-Order Logic with Dynamical Predicates}},
booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
pages = {80:1--80:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-388-1},
ISSN = {1868-8969},
year = {2025},
volume = {345},
editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.80},
URN = {urn:nbn:de:0030-drops-241879},
doi = {10.4230/LIPIcs.MFCS.2025.80},
annote = {Keywords: Monadic second-order logic, linear recurrence sequences, decidability, Baker’s theorem}
}
Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell. Positivity Problems for Reversible Linear Recurrence Sequences. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 130:1-130:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{kenison_et_al:LIPIcs.ICALP.2023.130,
author = {Kenison, George and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Worrell, James},
title = {{Positivity Problems for Reversible Linear Recurrence Sequences}},
booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
pages = {130:1--130:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-278-5},
ISSN = {1868-8969},
year = {2023},
volume = {261},
editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.130},
URN = {urn:nbn:de:0030-drops-181821},
doi = {10.4230/LIPIcs.ICALP.2023.130},
annote = {Keywords: The Positivity Problem, Linear Recurrence Sequences, Verification}
}
Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)
Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell. Skolem Meets Schanuel. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bilu_et_al:LIPIcs.MFCS.2022.20,
author = {Bilu, Yuri and Luca, Florian and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Purser, David and Worrell, James},
title = {{Skolem Meets Schanuel}},
booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
pages = {20:1--20:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-256-3},
ISSN = {1868-8969},
year = {2022},
volume = {241},
editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.20},
URN = {urn:nbn:de:0030-drops-168180},
doi = {10.4230/LIPIcs.MFCS.2022.20},
annote = {Keywords: Skolem Problem, Skolem Conjecture, Exponential Local-Global Principle, p-adic Schanuel Conjecture}
}