Search Results

Documents authored by Ovcharov, Sergei


Document
On Limits of Symbolic Approach to SAT Solving

Authors: Dmitry Itsykson and Sergei Ovcharov

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
We study the symbolic approach to the propositional satisfiability problem proposed by Aguirre and Vardi in 2001 based on OBDDs and symbolic quantifier elimination. We study the theoretical limitations of the most general version of this approach where it is allowed to dynamically change variable order in OBDD. We refer to algorithms based on this approach as OBDD(∧, ∃, reordering) algorithms. We prove the first exponential lower bound of OBDD(∧, ∃, reordering) algorithms on unsatisfiable formulas, and give an example of formulas having short tree-like resolution proofs that are exponentially hard for OBDD(∧, ∃, reordering) algorithms. We also present the first exponential lower bound for natural formulas with clear combinatorial meaning: every OBDD(∧, ∃, reordering) algorithm runs exponentially long on the binary pigeonhole principle BPHP^{n+1}_n.

Cite as

Dmitry Itsykson and Sergei Ovcharov. On Limits of Symbolic Approach to SAT Solving. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.SAT.2024.19,
  author =	{Itsykson, Dmitry and Ovcharov, Sergei},
  title =	{{On Limits of Symbolic Approach to SAT Solving}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.19},
  URN =		{urn:nbn:de:0030-drops-205415},
  doi =		{10.4230/LIPIcs.SAT.2024.19},
  annote =	{Keywords: Symbolic quantifier elimination, OBDD, lower bounds, tree-like resolution, proof complexity, error-correcting codes, binary pigeonhole principle}
}
Document
OBDD(Join) Proofs Cannot Be Balanced

Authors: Sergei Ovcharov

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We study OBDD-based propositional proof systems introduced in 2004 by Atserias, Kolaitis, and Vardi that prove the unsatisfiability of a CNF formula by deduction of an identically false OBDD from OBDDs representing clauses of the initial formula. We consider a proof system OBDD(∧) that uses only the conjunction (join) rule and a proof system OBDD(∧, reordering) (introduced in 2017 by Itsykson, Knop, Romashchenko, and Sokolov) that uses the conjunction (join) rule and the rule that allows changing the order of variables in OBDD. We study whether these systems can be balanced i.e. every refutation of size S can be reassembled into a refutation of depth O(log S) with at most a polynomial-size increase. We construct a family of unsatisfiable CNF formulas F_n such that F_n has a polynomial-size tree-like OBDD(∧) refutation of depth poly(n) and for arbitrary OBDD(∧, reordering) refutation Π of F_n for every α ∈ (0,1) the following trade-off holds: either the size of Π is 2^Ω(n^α) or the depth of Π is Ω(n^{1-α}). As a corollary of the trade-offs, we get that OBDD(∧) and OBDD(∧, reordering) proofs cannot be balanced.

Cite as

Sergei Ovcharov. OBDD(Join) Proofs Cannot Be Balanced. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 72:1-72:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ovcharov:LIPIcs.MFCS.2023.72,
  author =	{Ovcharov, Sergei},
  title =	{{OBDD(Join) Proofs Cannot Be Balanced}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{72:1--72:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.72},
  URN =		{urn:nbn:de:0030-drops-186065},
  doi =		{10.4230/LIPIcs.MFCS.2023.72},
  annote =	{Keywords: Proof complexity, OBDD, lower bounds, depth of proofs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail