Search Results

Documents authored by Raftopoulou, Chrysanthi


Found 2 Possible Name Variants:

Raftopoulou, Chrysanthi N.

Document
Parameterized Algorithms for Upward Planarity

Authors: Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We obtain new parameterized algorithms for the classical problem of determining whether a directed acyclic graph admits an upward planar drawing. Our results include a new fixed-parameter algorithm parameterized by the number of sources, an XP-algorithm parameterized by treewidth, and a fixed-parameter algorithm parameterized by treedepth. All three algorithms are obtained using a novel framework for the problem that combines SPQR tree-decompositions with parameterized techniques. Our approach unifies and pushes beyond previous tractability results for the problem on series-parallel digraphs, single-source digraphs and outerplanar digraphs.

Cite as

Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov. Parameterized Algorithms for Upward Planarity. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chaplick_et_al:LIPIcs.SoCG.2022.26,
  author =	{Chaplick, Steven and Di Giacomo, Emilio and Frati, Fabrizio and Ganian, Robert and Raftopoulou, Chrysanthi N. and Simonov, Kirill},
  title =	{{Parameterized Algorithms for Upward Planarity}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.26},
  URN =		{urn:nbn:de:0030-drops-160349},
  doi =		{10.4230/LIPIcs.SoCG.2022.26},
  annote =	{Keywords: Upward planarity, parameterized algorithms, SPQR trees, treewidth, treedepth}
}
Document
On Optimal 2- and 3-Planar Graphs

Authors: Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
A graph is k-planar if it can be drawn in the plane such that no edge is crossed more than k times. While for k=1, optimal 1-planar graphs, i.e., those with n vertices and exactly 4n-8 edges, have been completely characterized, this has not been the case for k > 1. For k=2,3 and 4, upper bounds on the edge density have been developed for the case of simple graphs by Pach and Tóth, Pach et al. and Ackerman, which have been used to improve the well-known "Crossing Lemma". Recently, we proved that these bounds also apply to non-simple 2- and 3-planar graphs without homotopic parallel edges and self-loops. In this paper, we completely characterize optimal 2- and 3-planar graphs, i.e., those that achieve the aforementioned upper bounds. We prove that they have a remarkably simple regular structure, although they might be non-simple. The new characterization allows us to develop notable insights concerning new inclusion relationships with other graph classes.

Cite as

Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On Optimal 2- and 3-Planar Graphs. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.SoCG.2017.16,
  author =	{Bekos, Michael A. and Kaufmann, Michael and Raftopoulou, Chrysanthi N.},
  title =	{{On Optimal 2- and 3-Planar Graphs}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.16},
  URN =		{urn:nbn:de:0030-drops-72307},
  doi =		{10.4230/LIPIcs.SoCG.2017.16},
  annote =	{Keywords: topological graphs, optimal k-planar graphs, characterization}
}
Document
Two-Page Book Embeddings of 4-Planar Graphs

Authors: Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
Back in the eighties, Heath showed that every 3-planar graph is subhamiltonian and asked whether this result can be extended to a class of graphs of degree greater than three. In this paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time and uses existing methods for computing hamiltonian cycles in planar graphs. The second one, which solves the general case of the problem, is a quadratic-time algorithm based on the book embedding viewpoint of the problem.

Cite as

Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-Page Book Embeddings of 4-Planar Graphs. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 137-148, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.STACS.2014.137,
  author =	{Bekos, Michael A. and Gronemann, Martin and Raftopoulou, Chrysanthi N.},
  title =	{{Two-Page Book Embeddings of 4-Planar Graphs}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{137--148},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.137},
  URN =		{urn:nbn:de:0030-drops-44536},
  doi =		{10.4230/LIPIcs.STACS.2014.137},
  annote =	{Keywords: Book Embedding, Subhamiltonicity, 4-Planar Graphs}
}

Raftopoulou, Chrysanthi

Document
Layered Fan-Planar Graph Drawings

Authors: Therese Biedl, Steven Chaplick, Michael Kaufmann, Fabrizio Montecchiani, Martin Nöllenburg, and Chrysanthi Raftopoulou

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
In a fan-planar drawing of a graph an edge can cross only edges with a common end-vertex. In this paper, we study fan-planar drawings that use h (horizontal) layers and are proper, i.e., edges connect adjacent layers. We show that if the embedding of the graph is fixed, then testing the existence of such drawings is fixed-parameter tractable in h, via a reduction to a similar result for planar graphs by Dujmović et al. If the embedding is not fixed, then we give partial results for h = 2: It was already known how to test the existence of fan-planar proper 2-layer drawings for 2-connected graphs, and we show here how to test this for trees. Along the way, we exhibit other interesting results for graphs with a fan-planar proper h-layer drawing; in particular we bound their pathwidth and show that they have a bar-1-visibility representation.

Cite as

Therese Biedl, Steven Chaplick, Michael Kaufmann, Fabrizio Montecchiani, Martin Nöllenburg, and Chrysanthi Raftopoulou. Layered Fan-Planar Graph Drawings. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 14:1-14:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{biedl_et_al:LIPIcs.MFCS.2020.14,
  author =	{Biedl, Therese and Chaplick, Steven and Kaufmann, Michael and Montecchiani, Fabrizio and N\"{o}llenburg, Martin and Raftopoulou, Chrysanthi},
  title =	{{Layered Fan-Planar Graph Drawings}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{14:1--14:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.14},
  URN =		{urn:nbn:de:0030-drops-126835},
  doi =		{10.4230/LIPIcs.MFCS.2020.14},
  annote =	{Keywords: Graph Drawing, Parameterized Complexity, Beyond Planar Graphs}
}
Document
Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

Authors: Michael A. Bekos, Giordano Da Lozzo, Svenja M. Griesbach, Martin Gronemann, Fabrizio Montecchiani, and Chrysanthi Raftopoulou

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
An embedding of a graph in a book, called book embedding, consists of a linear ordering of its vertices along the spine of the book and an assignment of its edges to the pages of the book, so that no two edges on the same page cross. The book thickness of a graph is the minimum number of pages over all its book embeddings. For planar graphs, a fundamental result is due to Yannakakis, who proposed an algorithm to compute embeddings of planar graphs in books with four pages. Our main contribution is a technique that generalizes this result to a much wider family of nonplanar graphs, which is characterized by a biconnected skeleton of crossing-free edges whose faces have bounded degree. Notably, this family includes all 1-planar and all optimal 2-planar graphs as subgraphs. We prove that this family of graphs has bounded book thickness, and as a corollary, we obtain the first constant upper bound for the book thickness of optimal 2-planar graphs.

Cite as

Michael A. Bekos, Giordano Da Lozzo, Svenja M. Griesbach, Martin Gronemann, Fabrizio Montecchiani, and Chrysanthi Raftopoulou. Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.SoCG.2020.16,
  author =	{Bekos, Michael A. and Da Lozzo, Giordano and Griesbach, Svenja M. and Gronemann, Martin and Montecchiani, Fabrizio and Raftopoulou, Chrysanthi},
  title =	{{Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{16:1--16:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.16},
  URN =		{urn:nbn:de:0030-drops-121749},
  doi =		{10.4230/LIPIcs.SoCG.2020.16},
  annote =	{Keywords: Book embeddings, Book thickness, Nonplanar graphs, Planar skeleton}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail