Search Results

Documents authored by Shinkar, Igor


Document
RANDOM
Matrix Multiplication Reductions

Authors: Ashish Gola, Igor Shinkar, and Harsimran Singh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper we study a worst case to average case reduction for the problem of matrix multiplication over finite fields. Suppose we have an efficient average case algorithm, that given two random matrices A,B outputs a matrix that has a non-trivial correlation with their product A ⋅ B. Can we transform it into a worst case algorithm, that outputs the correct answer for all inputs without incurring a significant overhead in the running time? We present two results in this direction. - Two-sided error in the high agreement regime. We begin with a brief remark about a reduction for high agreement algorithms, i.e., an algorithm which agrees with the correct output on a large (say > 0.9) fraction of entries, and show that the standard self-correction of linearity allows us to transform such algorithms into algorithms that work in worst case. - One-sided error in the low agreement regime. Focusing on average case algorithms with one-sided error, we show that over 𝔽₂ there is a reduction that gets an O(T) time average case algorithm that given a random input A,B outputs a matrix that agrees with A ⋅ B on at least 51% of the entries (i.e., has only a slight advantage over the trivial algorithm), and transforms it into an Õ(T) time worst case algorithm, that outputs the correct answer for all inputs with high probability.

Cite as

Ashish Gola, Igor Shinkar, and Harsimran Singh. Matrix Multiplication Reductions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gola_et_al:LIPIcs.APPROX/RANDOM.2024.34,
  author =	{Gola, Ashish and Shinkar, Igor and Singh, Harsimran},
  title =	{{Matrix Multiplication Reductions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.34},
  URN =		{urn:nbn:de:0030-drops-210274},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.34},
  annote =	{Keywords: Matrix Multiplication, Reductions, Worst case to average case reductions}
}
Document
Track A: Algorithms, Complexity and Games
Relaxed Locally Correctable Codes with Improved Parameters

Authors: Vahid R. Asadi and Igor Shinkar

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Locally decodable codes (LDCs) are error-correcting codes C: Σ^k → Σⁿ that admit a local decoding algorithm that recovers each individual bit of the message by querying only a few bits from a noisy codeword. An important question in this line of research is to understand the optimal trade-off between the query complexity of LDCs and their block length. Despite importance of these objects, the best known constructions of constant query LDCs have super-polynomial length, and there is a significant gap between the best constructions and the known lower bounds in terms of the block length. For many applications it suffices to consider the weaker notion of relaxed LDCs (RLDCs), which allows the local decoding algorithm to abort if by querying a few bits it detects that the input is not a codeword. This relaxation turned out to allow decoding algorithms with constant query complexity for codes with almost linear length. Specifically, [{Ben-Sasson} et al., 2006] constructed a q-query RLDC that encodes a message of length k using a codeword of block length n = O_q(k^{1+O(1/√q)}) for any sufficiently large q, where O_q(⋅) hides some constant that depends only on q. In this work we improve the parameters of [{Ben-Sasson} et al., 2006] by constructing a q-query RLDC that encodes a message of length k using a codeword of block length O_q(k^{1+O(1/{q})}) for any sufficiently large q. This construction matches (up to a multiplicative constant factor) the lower bounds of [Jonathan Katz and Trevisan, 2000; Woodruff, 2007] for constant query LDCs, thus making progress toward understanding the gap between LDCs and RLDCs in the constant query regime. In fact, our construction extends to the stronger notion of relaxed locally correctable codes (RLCCs), introduced in [Tom Gur et al., 2018], where given a noisy codeword the correcting algorithm either recovers each individual bit of the codeword by only reading a small part of the input, or aborts if the input is detected to be corrupt.

Cite as

Vahid R. Asadi and Igor Shinkar. Relaxed Locally Correctable Codes with Improved Parameters. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 18:1-18:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{asadi_et_al:LIPIcs.ICALP.2021.18,
  author =	{Asadi, Vahid R. and Shinkar, Igor},
  title =	{{Relaxed Locally Correctable Codes with Improved Parameters}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{18:1--18:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.18},
  URN =		{urn:nbn:de:0030-drops-140878},
  doi =		{10.4230/LIPIcs.ICALP.2021.18},
  annote =	{Keywords: Algorithmic coding theory, consistency test using random walk, Reed-Muller code, relaxed locally decodable codes, relaxed locally correctable codes}
}
Document
On Local Testability in the Non-Signaling Setting

Authors: Alessandro Chiesa, Peter Manohar, and Igor Shinkar

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions. We prove that low-degree testing in the non-signaling setting is possible, assuming that the locality of the non-signaling function exceeds a threshold. We additionally show that if the locality is below the threshold then the test fails spectacularly, in that there exists a non-signaling function which passes the test with probability 1 and yet is maximally far from being low-degree. Along the way, we present general results about the local testability of linear codes in the non-signaling setting. These include formulating natural definitions that capture the condition that a non-signaling function "belongs" to a given code, and characterizing the sets of local constraints that imply membership in the code. We prove these results by formulating a logical inference system for linear constraints on non-signaling functions that is complete and sound.

Cite as

Alessandro Chiesa, Peter Manohar, and Igor Shinkar. On Local Testability in the Non-Signaling Setting. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 26:1-26:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chiesa_et_al:LIPIcs.ITCS.2020.26,
  author =	{Chiesa, Alessandro and Manohar, Peter and Shinkar, Igor},
  title =	{{On Local Testability in the Non-Signaling Setting}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{26:1--26:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.26},
  URN =		{urn:nbn:de:0030-drops-117112},
  doi =		{10.4230/LIPIcs.ITCS.2020.26},
  annote =	{Keywords: non-signaling strategies, locally testable codes, low-degree testing, Fourier analysis}
}
Document
RANDOM
String Matching: Communication, Circuits, and Learning

Authors: Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem.

Cite as

Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar. String Matching: Communication, Circuits, and Learning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 56:1-56:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX-RANDOM.2019.56,
  author =	{Golovnev, Alexander and G\"{o}\"{o}s, Mika and Reichman, Daniel and Shinkar, Igor},
  title =	{{String Matching: Communication, Circuits, and Learning}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{56:1--56:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.56},
  URN =		{urn:nbn:de:0030-drops-112717},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.56},
  annote =	{Keywords: string matching, communication complexity, circuit complexity, PAC learning}
}
Document
Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

Authors: Alessandro Chiesa, Peter Manohar, and Igor Shinkar

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
Non-signaling strategies are a generalization of quantum strategies that have been studied in physics over the past three decades. Recently, they have found applications in theoretical computer science, including to proving inapproximability results for linear programming and to constructing protocols for delegating computation. A central tool for these applications is probabilistically checkable proofs (PCPs) that are sound against non-signaling strategies. In this paper we prove that the exponential-length constant-query PCP construction due to Arora et al. (JACM 1998) is sound against non-signaling strategies. Our result offers a new length-vs-query tradeoff when compared to the non-signaling PCP of Kalai, Raz, and Rothblum (STOC 2013 and 2014) and, moreover, may serve as an intermediate step to a proof of a non-signaling analogue of the PCP Theorem.

Cite as

Alessandro Chiesa, Peter Manohar, and Igor Shinkar. Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chiesa_et_al:LIPIcs.ITCS.2019.25,
  author =	{Chiesa, Alessandro and Manohar, Peter and Shinkar, Igor},
  title =	{{Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.25},
  URN =		{urn:nbn:de:0030-drops-101188},
  doi =		{10.4230/LIPIcs.ITCS.2019.25},
  annote =	{Keywords: probabilistically checkable proofs, linearity testing, non-signaling strategies}
}
Document
Testing Linearity against Non-Signaling Strategies

Authors: Alessandro Chiesa, Peter Manohar, and Igor Shinkar

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
Non-signaling strategies are collections of distributions with certain non-local correlations. They have been studied in Physics as a strict generalization of quantum strategies to understand the power and limitations of Nature's apparent non-locality. Recently, they have received attention in Theoretical Computer Science due to connections to Complexity and Cryptography. We initiate the study of Property Testing against non-signaling strategies, focusing first on the classical problem of linearity testing (Blum, Luby, and Rubinfeld; JCSS 1993). We prove that any non-signaling strategy that passes the linearity test with high probability must be close to a quasi-distribution over linear functions. Quasi-distributions generalize the notion of probability distributions over global objects (such as functions) by allowing negative probabilities, while at the same time requiring that "local views" follow standard distributions (with non-negative probabilities). Quasi-distributions arise naturally in the study of Quantum Mechanics as a tool to describe various non-local phenomena. Our analysis of the linearity test relies on Fourier analytic techniques applied to quasi-distributions. Along the way, we also establish general equivalences between non-signaling strategies and quasi-distributions, which we believe will provide a useful perspective on the study of Property Testing against non-signaling strategies beyond linearity testing.

Cite as

Alessandro Chiesa, Peter Manohar, and Igor Shinkar. Testing Linearity against Non-Signaling Strategies. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 17:1-17:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chiesa_et_al:LIPIcs.CCC.2018.17,
  author =	{Chiesa, Alessandro and Manohar, Peter and Shinkar, Igor},
  title =	{{Testing Linearity against Non-Signaling Strategies}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{17:1--17:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.17},
  URN =		{urn:nbn:de:0030-drops-88731},
  doi =		{10.4230/LIPIcs.CCC.2018.17},
  annote =	{Keywords: property testing, linearity testing, non-signaling strategies, quasi-distributions}
}
Document
On Axis-Parallel Tests for Tensor Product Codes

Authors: Alessandro Chiesa, Peter Manohar, and Igor Shinkar

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests. In this paper we study tests that only consider restrictions along axis-parallel hyperplanes, which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006). While such tests are necessarily "weaker", they work for a more general class of codes, namely tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan 2008; Meir 2010). We present two results on axis-parallel tests. (1) Bivariate low-degree testing with low-agreement. We prove an analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit with much larger field size. Namely, for the 2-wise tensor product of the Reed-Solomon code, we prove that for sufficiently large fields, the 2-query variant of the axis-parallel line test (row-vs-column test) works for arbitrarily small agreement. Prior analyses of axis-parallel tests assumed high agreement, and no results for such tests in the low-agreement regime were known. Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies on algebraic methods such as Bezout's Theorem, and instead leverages a fundamental result in extremal graph theory by Kovari, Sos, and Turan. To our knowledge, this is the first time this result is used in the context of low-degree testing. (2) Improved robustness for tensor product codes. Robustness is a strengthening of local testability that underlies many applications. We prove that the axis-parallel hyperplane test for the m-wise tensor product of a linear code with block length n and distance d is Omega(d^m/n^m)-robust. This improves on a theorem of Viderman (2012) by a factor of 1/poly(m). While the improvement is not large, we believe that our proof is a notable simplification compared to prior work.

Cite as

Alessandro Chiesa, Peter Manohar, and Igor Shinkar. On Axis-Parallel Tests for Tensor Product Codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 39:1-39:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chiesa_et_al:LIPIcs.APPROX-RANDOM.2017.39,
  author =	{Chiesa, Alessandro and Manohar, Peter and Shinkar, Igor},
  title =	{{On Axis-Parallel Tests for Tensor Product Codes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{39:1--39:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.39},
  URN =		{urn:nbn:de:0030-drops-75882},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.39},
  annote =	{Keywords: tensor product codes, locally testable codes, low-degree testing, extremal graph theory}
}
Document
An ~O(n) Queries Adaptive Tester for Unateness

Authors: Subhash Khot and Igor Shinkar

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
We present an adaptive tester for the unateness property of Boolean functions. Given a function f:{0,1}^n -> {0,1} the tester makes O(n log(n)/epsilon) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is epsilon-far from being unate.

Cite as

Subhash Khot and Igor Shinkar. An ~O(n) Queries Adaptive Tester for Unateness. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 37:1-37:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{khot_et_al:LIPIcs.APPROX-RANDOM.2016.37,
  author =	{Khot, Subhash and Shinkar, Igor},
  title =	{{An \textasciitildeO(n) Queries Adaptive Tester for Unateness}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{37:1--37:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.37},
  URN =		{urn:nbn:de:0030-drops-66603},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.37},
  annote =	{Keywords: property testing, boolean functions, unateness}
}
Document
On Percolation and NP-Hardness

Authors: Huck Bennett, Daniel Reichman, and Igor Shinkar

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
The edge-percolation and vertex-percolation random graph models start with an arbitrary graph G, and randomly delete edges or vertices of G with some fixed probability. We study the computational hardness of problems whose inputs are obtained by applying percolation to worst-case instances. Specifically, we show that a number of classical N P-hard graph problems remain essentially as hard on percolated instances as they are in the worst-case (assuming NP !subseteq BPP). We also prove hardness results for other NP-hard problems such as Constraint Satisfaction Problems, where random deletions are applied to clauses or variables. We focus on proving the hardness of the Maximum Independent Set problem and the Graph Coloring problem on percolated instances. To show this we establish the robustness of the corresponding parameters alpha(.) and Chi(.) to percolation, which may be of independent interest. Given a graph G, let G' be the graph obtained by randomly deleting edges of G. We show that if alpha(G) is small, then alpha(G') remains small with probability at least 0.99. Similarly, we show that if Chi(G) is large, then Chi(G') remains large with probability at least 0.99.

Cite as

Huck Bennett, Daniel Reichman, and Igor Shinkar. On Percolation and NP-Hardness. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 80:1-80:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bennett_et_al:LIPIcs.ICALP.2016.80,
  author =	{Bennett, Huck and Reichman, Daniel and Shinkar, Igor},
  title =	{{On Percolation and NP-Hardness}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{80:1--80:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.80},
  URN =		{urn:nbn:de:0030-drops-62056},
  doi =		{10.4230/LIPIcs.ICALP.2016.80},
  annote =	{Keywords: percolation, NP-hardness, random subgraphs, chromatic number}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail