Search Results

Documents authored by Smorodinsky, Shakhar


Document
Sparse Bounded Hop-Spanners for Geometric Intersection Graphs

Authors: Sujoy Bhore, Timothy M. Chan, Zhengcheng Huang, Shakhar Smorodinsky, and Csaba D. Tóth

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}).

Cite as

Sujoy Bhore, Timothy M. Chan, Zhengcheng Huang, Shakhar Smorodinsky, and Csaba D. Tóth. Sparse Bounded Hop-Spanners for Geometric Intersection Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhore_et_al:LIPIcs.SoCG.2025.17,
  author =	{Bhore, Sujoy and Chan, Timothy M. and Huang, Zhengcheng and Smorodinsky, Shakhar and T\'{o}th, Csaba D.},
  title =	{{Sparse Bounded Hop-Spanners for Geometric Intersection Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.17},
  URN =		{urn:nbn:de:0030-drops-231698},
  doi =		{10.4230/LIPIcs.SoCG.2025.17},
  annote =	{Keywords: Geometric Spanners, Geometric Intersection Graphs}
}
Document
Polychromatic Coloring of Tuples in Hypergraphs

Authors: Ahmad Biniaz, Jean-Lou De Carufel, Anil Maheshwari, Michiel Smid, Shakhar Smorodinsky, and Miloš Stojaković

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A hypergraph H consists of a set V of vertices and a set E of hyperedges that are subsets of V. A t-tuple of H is a subset of t vertices of V. A t-tuple k-coloring of H is a mapping of its t-tuples into k colors. A coloring is called (t,k,f)-polychromatic if each hyperedge of E that has at least f vertices contains tuples of all the k colors. Let f_H(t,k) be the minimum f such that H has a (t,k,f)-polychromatic coloring. For a family of hypergraphs ℋ let f_H(t,k) be the maximum f_H(t,k) over all hypergraphs H in H. Determining f_H(t,k) has been an active research direction in recent years. This is challenging even for t = 1. We present several new results in this direction for t ≥ 2. - Let H be the family of hypergraphs H that is obtained by taking any set P of points in ℝ², setting V: = P and E: = {d ∩ P: d is a disk in ℝ²}. We prove that f_ H(2,k) ≤ 3.7^k, that is, the pairs of points (2-tuples) can be k-colored such that any disk containing at least 3.7^k points has pairs of all colors. We generalize this result to points and balls in higher dimensions. - For the family H of hypergraphs that are defined by grid vertices and axis-parallel rectangles in the plane, we show that f_H(2,k) ≤ √{ck ln k} for some constant c. We then generalize this to higher dimensions, to other shapes, and to tuples of larger size. - For the family H of shrinkable hypergraphs of VC-dimension at most d we prove that f_ H(d+1,k) ≤ c^k for some constant c = c(d). Towards this bound, we obtain a result of independent interest: Every hypergraph with n vertices and with VC-dimension at most d has a (d+1)-tuple T of depth at least n/c, i.e., any hyperedge that contains T also contains n/c other vertices. - For the relationship between t-tuple coloring and vertex coloring in any hypergraph H we establish the inequality 1/e⋅ tk^{1/t} ≤ f_H(t,k) ≤ f_H(1,tk^{1/t}). For the special case of k = 2, referred to as the bichromatic coloring, we prove that t+1 ≤ f_H(t,2) ≤ max{f_H(1,2), t+1}; this improves upon the previous best known upper bound. - We study the relationship between tuple coloring and epsilon nets. In particular we show that if f_H(1,k) = O(k) for a hypergraph H with n vertices, then for any 0 < ε < 1 the t-tuples of H can be partitioned into Ω((εn/t)^t) ε-t-nets. This bound is tight when t is a constant.

Cite as

Ahmad Biniaz, Jean-Lou De Carufel, Anil Maheshwari, Michiel Smid, Shakhar Smorodinsky, and Miloš Stojaković. Polychromatic Coloring of Tuples in Hypergraphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.19,
  author =	{Biniaz, Ahmad and De Carufel, Jean-Lou and Maheshwari, Anil and Smid, Michiel and Smorodinsky, Shakhar and Stojakovi\'{c}, Milo\v{s}},
  title =	{{Polychromatic Coloring of Tuples in Hypergraphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.19},
  URN =		{urn:nbn:de:0030-drops-231718},
  doi =		{10.4230/LIPIcs.SoCG.2025.19},
  annote =	{Keywords: Hypergraph Coloring, Polychromatic Coloring, Geometric Hypergraphs, Cover Decomposable Hypergraphs, Epsilon Nets}
}
Document
On Zarankiewicz’s Problem for Intersection Hypergraphs of Geometric Objects

Authors: Timothy M. Chan, Chaya Keller, and Shakhar Smorodinsky

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
In this paper we study the hypergraph Zarankiewicz’s problem in a geometric setting - for r-partite intersection hypergraphs of families of geometric objects. Our main results are essentially sharp bounds for families of axis-parallel boxes in ℝ^d and families of pseudo-discs. For axis-parallel boxes, we obtain the sharp bound O_{d,t}(n^{r-1}((log n)/(log log n))^{d-1}). The best previous bound was larger by a factor of about (log n)^{d(2^{r-1}-2)}. For pseudo-discs, we obtain the bound O_t(n^{r-1}(log n)^{r-2}), which is sharp up to logarithmic factors. As this hypergraph has no algebraic structure, no improvement of Erdős' 60-year-old O(n^{r-(1/t^{r-1})}) bound was known for this setting. Futhermore, even in the special case of discs for which the semialgebraic structure can be used, our result improves the best known result by a factor of Ω̃(n^{(2r-2)/(3r-2)}). To obtain our results, we use the recently improved results for the graph Zarankiewicz’s problem in the corresponding settings, along with a variety of combinatorial and geometric techniques, including shallow cuttings, biclique covers, transversals, and planarity.

Cite as

Timothy M. Chan, Chaya Keller, and Shakhar Smorodinsky. On Zarankiewicz’s Problem for Intersection Hypergraphs of Geometric Objects. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.SoCG.2025.33,
  author =	{Chan, Timothy M. and Keller, Chaya and Smorodinsky, Shakhar},
  title =	{{On Zarankiewicz’s Problem for Intersection Hypergraphs of Geometric Objects}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.33},
  URN =		{urn:nbn:de:0030-drops-231850},
  doi =		{10.4230/LIPIcs.SoCG.2025.33},
  annote =	{Keywords: Zarankiewicz’s Problem, hypergraphs, intersection graphs, axis-parallel boxes, pseudo-discs}
}
Document
Zarankiewicz’s Problem via ε-t-Nets

Authors: Chaya Keller and Shakhar Smorodinsky

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The classical Zarankiewicz’s problem asks for the maximum number of edges in a bipartite graph on n vertices which does not contain the complete bipartite graph K_{t,t}. Kővári, Sós and Turán proved an upper bound of O(n^{2-1/t}). Fox et al. obtained an improved bound of O(n^{2-1/d}) for graphs of VC-dimension d (where d < t). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. Chan and Har-Peled further improved Basit et al.’s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of O(n log log n) for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz’s problem, via ε-t-nets - a recently introduced generalization of the classical notion of ε-nets. Using the new approach, we obtain a sharp bound of O(n) for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the O(n^{2-1/d}) bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp O(n {log n}/{log log n}) bound for the intersection graph of two families of axis-parallel rectangles.

Cite as

Chaya Keller and Shakhar Smorodinsky. Zarankiewicz’s Problem via ε-t-Nets. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{keller_et_al:LIPIcs.SoCG.2024.66,
  author =	{Keller, Chaya and Smorodinsky, Shakhar},
  title =	{{Zarankiewicz’s Problem via \epsilon-t-Nets}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{66:1--66:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.66},
  URN =		{urn:nbn:de:0030-drops-200111},
  doi =		{10.4230/LIPIcs.SoCG.2024.66},
  annote =	{Keywords: Zarankiewicz’s Problem, \epsilon-t-nets, pseudo-discs, VC-dimension}
}
Document
A Solution to Ringel’s Circle Problem

Authors: James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We construct families of circles in the plane such that their tangency graphs have arbitrarily large girth and chromatic number. This provides a strong negative answer to Ringel’s circle problem (1959). The proof relies on a (multidimensional) version of Gallai’s theorem with polynomial constraints, which we derive from the Hales-Jewett theorem and which may be of independent interest.

Cite as

James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak. A Solution to Ringel’s Circle Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2022.33,
  author =	{Davies, James and Keller, Chaya and Kleist, Linda and Smorodinsky, Shakhar and Walczak, Bartosz},
  title =	{{A Solution to Ringel’s Circle Problem}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.33},
  URN =		{urn:nbn:de:0030-drops-160413},
  doi =		{10.4230/LIPIcs.SoCG.2022.33},
  annote =	{Keywords: circle arrangement, chromatic number, Gallai’s theorem, polynomial method}
}
Document
The ε-t-Net Problem

Authors: Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and Yelena Yuditsky

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We study a natural generalization of the classical ε-net problem (Haussler - Welzl 1987), which we call the ε-t-net problem: Given a hypergraph on n vertices and parameters t and ε ≥ t/n, find a minimum-sized family S of t-element subsets of vertices such that each hyperedge of size at least ε n contains a set in S. When t=1, this corresponds to the ε-net problem. We prove that any sufficiently large hypergraph with VC-dimension d admits an ε-t-net of size O((1+log t)d/ε log 1/ε). For some families of geometrically-defined hypergraphs (such as the dual hypergraph of regions with linear union complexity), we prove the existence of O(1/ε)-sized ε-t-nets. We also present an explicit construction of ε-t-nets (including ε-nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of ε-nets (i.e., for t=1), it does not rely on advanced derandomization techniques. To this end we introduce a variant of the notion of VC-dimension which is of independent interest.

Cite as

Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and Yelena Yuditsky. The ε-t-Net Problem. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alon_et_al:LIPIcs.SoCG.2020.5,
  author =	{Alon, Noga and Jartoux, Bruno and Keller, Chaya and Smorodinsky, Shakhar and Yuditsky, Yelena},
  title =	{{The \epsilon-t-Net Problem}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.5},
  URN =		{urn:nbn:de:0030-drops-121639},
  doi =		{10.4230/LIPIcs.SoCG.2020.5},
  annote =	{Keywords: epsilon-nets, geometric hypergraphs, VC-dimension, linear union complexity}
}
Document
Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs

Authors: A. Karim Abu-Affash, Paz Carmi, Anil Maheshwari, Pat Morin, Michiel Smid, and Shakhar Smorodinsky

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We consider a well studied generalization of the maximum clique problem which is defined as follows. Given a graph G on n vertices and an integer d >= 1, in the maximum diameter-bounded subgraph problem (MaxDBS for short), the goal is to find a (vertex) maximum subgraph of G of diameter at most d. For d=1, this problem is equivalent to the maximum clique problem and thus it is NP-hard to approximate it within a factor n^{1-epsilon}, for any epsilon > 0. Moreover, it is known that, for any d >= 2, it is NP-hard to approximate MaxDBS within a factor n^{1/2 - epsilon}, for any epsilon > 0. In this paper we focus on MaxDBS for the class of unit disk graphs. We provide a polynomial-time constant-factor approximation algorithm for the problem. The approximation ratio of our algorithm does not depend on the diameter d. Even though the algorithm itself is simple, its analysis is rather involved. We combine tools from the theory of hypergraphs with bounded VC-dimension, k-quasi planar graphs, fractional Helly theorems and several geometric properties of unit disk graphs.

Cite as

A. Karim Abu-Affash, Paz Carmi, Anil Maheshwari, Pat Morin, Michiel Smid, and Shakhar Smorodinsky. Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{abuaffash_et_al:LIPIcs.SoCG.2018.2,
  author =	{Abu-Affash, A. Karim and Carmi, Paz and Maheshwari, Anil and Morin, Pat and Smid, Michiel and Smorodinsky, Shakhar},
  title =	{{Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{2:1--2:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.2},
  URN =		{urn:nbn:de:0030-drops-87152},
  doi =		{10.4230/LIPIcs.SoCG.2018.2},
  annote =	{Keywords: Approximation algorithms, maximum diameter-bounded subgraph, unit disk graphs, fractional Helly theorem, VC-dimension}
}
Document
From a (p,2)-Theorem to a Tight (p,q)-Theorem

Authors: Chaya Keller and Shakhar Smorodinsky

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
A family F of sets is said to satisfy the (p,q)-property if among any p sets of F some q have a non-empty intersection. The celebrated (p,q)-theorem of Alon and Kleitman asserts that any family of compact convex sets in R^d that satisfies the (p,q)-property for some q >= d+1, can be pierced by a fixed number (independent on the size of the family) f_d(p,q) of points. The minimum such piercing number is denoted by {HD}_d(p,q). Already in 1957, Hadwiger and Debrunner showed that whenever q > (d-1)/d p+1 the piercing number is {HD}_d(p,q)=p-q+1; no exact values of {HD}_d(p,q) were found ever since. While for an arbitrary family of compact convex sets in R^d, d >= 2, a (p,2)-property does not imply a bounded piercing number, such bounds were proved for numerous specific families. The best-studied among them is axis-parallel boxes in R^d, and specifically, axis-parallel rectangles in the plane. Wegner (1965) and (independently) Dol'nikov (1972) used a (p,2)-theorem for axis-parallel rectangles to show that {HD}_{rect}(p,q)=p-q+1 holds for all q>sqrt{2p}. These are the only values of q for which {HD}_{rect}(p,q) is known exactly. In this paper we present a general method which allows using a (p,2)-theorem as a bootstrapping to obtain a tight (p,q)-theorem, for families with Helly number 2, even without assuming that the sets in the family are convex or compact. To demonstrate the strength of this method, we show that {HD}_{d-box}(p,q)=p-q+1 holds for all q > c' log^{d-1} p, and in particular, {HD}_{rect}(p,q)=p-q+1 holds for all q >= 7 log_2 p (compared to q >= sqrt{2p}, obtained by Wegner and Dol'nikov more than 40 years ago). In addition, for several classes of families, we present improved (p,2)-theorems, some of which can be used as a bootstrapping to obtain tight (p,q)-theorems. In particular, we show that any family F of compact convex sets in R^d with Helly number 2 admits a (p,2)-theorem with piercing number O(p^{2d-1}), and thus, satisfies {HD}_{F}(p,q)=p-q+1 for all q>cp^{1-1/(2d-1)}, for a universal constant c.

Cite as

Chaya Keller and Shakhar Smorodinsky. From a (p,2)-Theorem to a Tight (p,q)-Theorem. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 51:1-51:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{keller_et_al:LIPIcs.SoCG.2018.51,
  author =	{Keller, Chaya and Smorodinsky, Shakhar},
  title =	{{From a (p,2)-Theorem to a Tight (p,q)-Theorem}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{51:1--51:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.51},
  URN =		{urn:nbn:de:0030-drops-87640},
  doi =		{10.4230/LIPIcs.SoCG.2018.51},
  annote =	{Keywords: (p,q)-Theorem, convexity, transversals, (p,2)-theorem, axis-parallel rectangles}
}
Document
On Interference Among Moving Sensors and Related Problems

Authors: Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, and Shakhar Smorodinsky

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We show that for any set of n moving points in R^d and any parameter 2<=k<n, one can select a fixed non-empty subset of the points of size O(k log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k) points per cell). We also show that the bound O(k log k) is near optimal even for the one dimensional case in which points move linearly in time. As an application, we show that one can assign communication radii to the sensors of a network of $n$ moving sensors so that at any given time, their interference is O( (n log n)^0.5). This is optimal up to an O((log n)^0.5) factor.

Cite as

Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, and Shakhar Smorodinsky. On Interference Among Moving Sensors and Related Problems. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{decarufel_et_al:LIPIcs.ESA.2016.34,
  author =	{De Carufel, Jean-Lou and Katz, Matthew J. and Korman, Matias and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Smorodinsky, Shakhar},
  title =	{{On Interference Among Moving Sensors and Related Problems}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{34:1--34:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.34},
  URN =		{urn:nbn:de:0030-drops-63850},
  doi =		{10.4230/LIPIcs.ESA.2016.34},
  annote =	{Keywords: Range spaces, Voronoi diagrams, moving points, facility location, interference minimization}
}
Document
Weak 1/r-Nets for Moving Points

Authors: Alexandre Rok and Shakhar Smorodinsky

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
In this paper, we extend the weak 1/r-net theorem to a kinetic setting where the underlying set of points is moving polynomially with bounded description complexity. We establish that one can find a kinetic analog N of a weak 1/r-net of cardinality O(r^(d(d+1)/2)log^d r) whose points are moving with coordinates that are rational functions with bounded description complexity. Moreover, each member of N has one polynomial coordinate.

Cite as

Alexandre Rok and Shakhar Smorodinsky. Weak 1/r-Nets for Moving Points. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 59:1-59:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{rok_et_al:LIPIcs.SoCG.2016.59,
  author =	{Rok, Alexandre and Smorodinsky, Shakhar},
  title =	{{Weak 1/r-Nets for Moving Points}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{59:1--59:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.59},
  URN =		{urn:nbn:de:0030-drops-59514},
  doi =		{10.4230/LIPIcs.SoCG.2016.59},
  annote =	{Keywords: Hypergraphs, Weak epsilon-net}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail