Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
D. M. Stull. The Dimension Spectrum Conjecture for Planar Lines. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 133:1-133:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{stull:LIPIcs.ICALP.2022.133, author = {Stull, D. M.}, title = {{The Dimension Spectrum Conjecture for Planar Lines}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {133:1--133:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.133}, URN = {urn:nbn:de:0030-drops-164749}, doi = {10.4230/LIPIcs.ICALP.2022.133}, annote = {Keywords: Algorithmic randomness, Kolmogorov complexity, effective dimension} }
Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)
D. M. Stull. Optimal Oracles for Point-To-Set Principles. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 57:1-57:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{stull:LIPIcs.STACS.2022.57, author = {Stull, D. M.}, title = {{Optimal Oracles for Point-To-Set Principles}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {57:1--57:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.57}, URN = {urn:nbn:de:0030-drops-158675}, doi = {10.4230/LIPIcs.STACS.2022.57}, annote = {Keywords: Algorithmic randomness, Kolmogorov complexity, geometric measure theory} }
Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)
Xiang Huang, Jack H. Lutz, Elvira Mayordomo, and Donald M. Stull. Asymptotic Divergences and Strong Dichotomy. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{huang_et_al:LIPIcs.STACS.2020.51, author = {Huang, Xiang and Lutz, Jack H. and Mayordomo, Elvira and Stull, Donald M.}, title = {{Asymptotic Divergences and Strong Dichotomy}}, booktitle = {37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)}, pages = {51:1--51:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-140-5}, ISSN = {1868-8969}, year = {2020}, volume = {154}, editor = {Paul, Christophe and Bl\"{a}ser, Markus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.51}, URN = {urn:nbn:de:0030-drops-119125}, doi = {10.4230/LIPIcs.STACS.2020.51}, annote = {Keywords: finite-state dimension, finite-state gambler, Kullback-Leibler divergence, normal sequences} }
Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)
Mathieu Hoyrup and Donald M. Stull. Semicomputable Points in Euclidean Spaces. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 48:1-48:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{hoyrup_et_al:LIPIcs.MFCS.2019.48, author = {Hoyrup, Mathieu and Stull, Donald M.}, title = {{Semicomputable Points in Euclidean Spaces}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {48:1--48:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.48}, URN = {urn:nbn:de:0030-drops-109928}, doi = {10.4230/LIPIcs.MFCS.2019.48}, annote = {Keywords: Semicomputable point, Left-c.e. real, Convex cone, Solovay reducibility, Genericity} }
Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)
Neil Lutz and Donald M. Stull. Projection Theorems Using Effective Dimension. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 71:1-71:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{lutz_et_al:LIPIcs.MFCS.2018.71, author = {Lutz, Neil and Stull, Donald M.}, title = {{Projection Theorems Using Effective Dimension}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {71:1--71:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.71}, URN = {urn:nbn:de:0030-drops-96532}, doi = {10.4230/LIPIcs.MFCS.2018.71}, annote = {Keywords: algorithmic randomness, geometric measure theory, Hausdorff dimension, Kolmogorov complexity} }
Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)
Donald M. Stull. Results on the Dimension Spectra of Planar Lines. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 79:1-79:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{stull:LIPIcs.MFCS.2018.79, author = {Stull, Donald M.}, title = {{Results on the Dimension Spectra of Planar Lines}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {79:1--79:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.79}, URN = {urn:nbn:de:0030-drops-96611}, doi = {10.4230/LIPIcs.MFCS.2018.79}, annote = {Keywords: algorithmic randomness, geometric measure theory, Hausdorff dimension, Kolmogorov complexity} }
Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)
Xiang Huang and Donald M. Stull. Polynomial Space Randomness in Analysis. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 86:1-86:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{huang_et_al:LIPIcs.MFCS.2016.86, author = {Huang, Xiang and Stull, Donald M.}, title = {{Polynomial Space Randomness in Analysis}}, booktitle = {41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)}, pages = {86:1--86:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-016-3}, ISSN = {1868-8969}, year = {2016}, volume = {58}, editor = {Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.86}, URN = {urn:nbn:de:0030-drops-64943}, doi = {10.4230/LIPIcs.MFCS.2016.86}, annote = {Keywords: algorithmic randomness, computable analysis, resource-bounded randomness, complexity theory} }
Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Mathieu Hoyrup, Diego Nava Saucedo, and Don M. Stull. Semicomputable Geometry. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 129:1-129:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{hoyrup_et_al:LIPIcs.ICALP.2018.129, author = {Hoyrup, Mathieu and Nava Saucedo, Diego and Stull, Don M.}, title = {{Semicomputable Geometry}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {129:1--129:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.129}, URN = {urn:nbn:de:0030-drops-91336}, doi = {10.4230/LIPIcs.ICALP.2018.129}, annote = {Keywords: Computable set, Semicomputable set, Solovay reducibility, Left-ce real, Genericity} }
Feedback for Dagstuhl Publishing