Search Results

Documents authored by Wagner, Mirko H.


Document
On the Uncrossed Number of Graphs

Authors: Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, a collection 𝒟 of drawings of G is uncrossed if, for each edge e of G, there is a drawing in 𝒟 such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing Numbers of Graphs 2018].

Cite as

Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner. On the Uncrossed Number of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.GD.2024.18,
  author =	{Balko, Martin and Hlin\v{e}n\'{y}, Petr and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Orthaber, Joachim and Vogtenhuber, Birgit and Wagner, Mirko H.},
  title =	{{On the Uncrossed Number of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.18},
  URN =		{urn:nbn:de:0030-drops-213028},
  doi =		{10.4230/LIPIcs.GD.2024.18},
  annote =	{Keywords: Uncrossed Number, Crossing Number, Planarity, Thickness}
}
Document
Crossing Numbers of Beyond Planar Graphs Re-Revisited: A Framework Approach

Authors: Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, and Mirko H. Wagner

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Beyond planarity concepts (prominent examples include k-planarity or fan-planarity) apply certain restrictions on the allowed patterns of crossings in drawings. It is natural to ask, how much the number of crossings may increase over the traditional (unrestricted) crossing number. Previous approaches to bound such ratios, e.g. [Markus Chimani et al., 2022; Nathan van Beusekom et al., 2022], require very specialized constructions and arguments for each considered beyond planarity concept, and mostly only yield asymptotically non-tight bounds. We propose a very general proof framework that allows us to obtain asymptotically tight bounds, and where the concept-specific parts of the proof typically boil down to a couple of lines. We show the strength of our approach by giving improved or first bounds for several beyond planarity concepts.

Cite as

Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, and Mirko H. Wagner. Crossing Numbers of Beyond Planar Graphs Re-Revisited: A Framework Approach. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chimani_et_al:LIPIcs.GD.2024.33,
  author =	{Chimani, Markus and Donzelmann, Torben and Kloster, Nick and Koch, Melissa and V\"{o}llering, Jan-Jakob and Wagner, Mirko H.},
  title =	{{Crossing Numbers of Beyond Planar Graphs Re-Revisited: A Framework Approach}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.33},
  URN =		{urn:nbn:de:0030-drops-213175},
  doi =		{10.4230/LIPIcs.GD.2024.33},
  annote =	{Keywords: Beyond planarity, crossing number, crossing ratio, proof framework}
}
Document
Exact Minimum Weight Spanners via Column Generation

Authors: Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Given a weighted graph G, a minimum weight α-spanner is a least-weight subgraph H ⊆ G that preserves minimum distances between all node pairs up to a factor of α. There are many results on heuristics and approximation algorithms, including a recent investigation of their practical performance [Markus Chimani and Finn Stutzenstein, 2022]. Exact approaches, in contrast, have long been denounced as impractical: The first exact ILP (integer linear program) method [Sigurd and Zachariasen, 2004] from 2004 is based on a model with exponentially many path variables, solved via column generation. A second approach [Ahmed et al., 2019], modeling via arc-based multicommodity flow, was presented in 2019. In both cases, only graphs with 40-100 nodes were reported to be solvable. In this paper, we briefly report on a theoretical comparison between these two models from a polyhedral point of view, and then concentrate on improvements and engineering aspects. We evaluate their performance in a large-scale empirical study. We report that our tuned column generation approach, based on multicriteria shortest path computations, is able to solve instances with over 16 000 nodes within 13 min. Furthermore, now knowing optimal solutions for larger graphs, we are able to investigate the quality of the strongest known heuristic on reasonably sized instances for the first time.

Cite as

Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Exact Minimum Weight Spanners via Column Generation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bokler_et_al:LIPIcs.ESA.2024.30,
  author =	{B\"{o}kler, Fritz and Chimani, Markus and Jasper, Henning and Wagner, Mirko H.},
  title =	{{Exact Minimum Weight Spanners via Column Generation}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.30},
  URN =		{urn:nbn:de:0030-drops-211012},
  doi =		{10.4230/LIPIcs.ESA.2024.30},
  annote =	{Keywords: Graph spanners, ILP, algorithm engineering, experimental study}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail