Search Results

Documents authored by van Bergerem, Steffen


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Verification of Population Protocols with Unordered Data

Authors: Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger, and Chana Weil-Kennedy

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Population protocols are a well-studied model of distributed computation in which a group of anonymous finite-state agents communicates via pairwise interactions. Together they decide whether their initial configuration, i. e., the initial distribution of agents in the states, satisfies a property. As an extension in order to express properties of multisets over an infinite data domain, Blondin and Ladouceur (ICALP'23) introduced population protocols with unordered data (PPUD). In PPUD, each agent carries a fixed data value, and the interactions between agents depend on whether their data are equal or not. Blondin and Ladouceur also identified the interesting subclass of immediate observation PPUD (IOPPUD), where in every transition one of the two agents remains passive and does not move, and they characterised its expressive power. We study the decidability and complexity of formally verifying these protocols. The main verification problem for population protocols is well-specification, that is, checking whether the given PPUD computes some function. We show that well-specification is undecidable in general. By contrast, for IOPPUD, we exhibit a large yet natural class of problems, which includes well-specification among other classic problems, and establish that these problems are in ExpSpace. We also provide a lower complexity bound, namely coNExpTime-hardness.

Cite as

Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger, and Chana Weil-Kennedy. Verification of Population Protocols with Unordered Data. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 156:1-156:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanbergerem_et_al:LIPIcs.ICALP.2024.156,
  author =	{van Bergerem, Steffen and Guttenberg, Roland and Kiefer, Sandra and Mascle, Corto and Waldburger, Nicolas and Weil-Kennedy, Chana},
  title =	{{Verification of Population Protocols with Unordered Data}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{156:1--156:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.156},
  URN =		{urn:nbn:de:0030-drops-202993},
  doi =		{10.4230/LIPIcs.ICALP.2024.156},
  annote =	{Keywords: Population protocols, Parameterized verification, Distributed computing, Well-specification}
}
Document
Learning Concepts Described By Weight Aggregation Logic

Authors: Steffen van Bergerem and Nicole Schweikardt

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
We consider weighted structures, which extend ordinary relational structures by assigning weights, i.e. elements from a particular group or ring, to tuples present in the structure. We introduce an extension of first-order logic that allows to aggregate weights of tuples, compare such aggregates, and use them to build more complex formulas. We provide locality properties of fragments of this logic including Feferman-Vaught decompositions and a Gaifman normal form for a fragment called FOW₁, as well as a localisation theorem for a larger fragment called FOWA₁. This fragment can express concepts from various machine learning scenarios. Using the locality properties, we show that concepts definable in FOWA₁ over a weighted background structure of at most polylogarithmic degree are agnostically PAC-learnable in polylogarithmic time after pseudo-linear time preprocessing.

Cite as

Steffen van Bergerem and Nicole Schweikardt. Learning Concepts Described By Weight Aggregation Logic. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vanbergerem_et_al:LIPIcs.CSL.2021.10,
  author =	{van Bergerem, Steffen and Schweikardt, Nicole},
  title =	{{Learning Concepts Described By Weight Aggregation Logic}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.10},
  URN =		{urn:nbn:de:0030-drops-134447},
  doi =		{10.4230/LIPIcs.CSL.2021.10},
  annote =	{Keywords: first-order definable concept learning, agnostic probably approximately correct learning, classification problems, locality, Feferman-Vaught decomposition, Gaifman normal form, first-order logic with counting, weight aggregation logic}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail