8 Search Results for "Bakshi, Ainesh"


Document
Interval Selection in Sliding Windows

Authors: Cezar-Mihail Alexandru and Christian Konrad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the L most recent intervals, for some integer L. We give the following results: 1) In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space Õ(|OPT|), and we show that any sliding window algorithm that computes a (2-ε)-approximation requires space Ω(L), for any ε > 0. 2) In the arbitrary-length case, we give a (11/3+ε)-approximation sliding window algorithm with space Õ(|OPT|), for any constant ε > 0, which constitutes our main result. We also show that space Ω(L) is needed for algorithms that compute a (2.5-ε)-approximation, for any ε > 0. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Cite as

Cezar-Mihail Alexandru and Christian Konrad. Interval Selection in Sliding Windows. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.ESA.2024.8,
  author =	{Alexandru, Cezar-Mihail and Konrad, Christian},
  title =	{{Interval Selection in Sliding Windows}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.8},
  URN =		{urn:nbn:de:0030-drops-210795},
  doi =		{10.4230/LIPIcs.ESA.2024.8},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Interval selection}
}
Document
RANDOM
Faster Algorithms for Schatten-p Low Rank Approximation

Authors: Praneeth Kacham and David P. Woodruff

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study algorithms for the Schatten-p Low Rank Approximation (LRA) problem. First, we show that by using fast rectangular matrix multiplication algorithms and different block sizes, we can improve the running time of the algorithms in the recent work of Bakshi, Clarkson and Woodruff (STOC 2022). We then show that by carefully combining our new algorithm with the algorithm of Li and Woodruff (ICML 2020), we can obtain even faster algorithms for Schatten-p LRA. While the block-based algorithms are fast in the real number model, we do not have a stability analysis which shows that the algorithms work when implemented on a machine with polylogarithmic bits of precision. We show that the LazySVD algorithm of Allen-Zhu and Li (NeurIPS 2016) can be implemented on a floating point machine with only logarithmic, in the input parameters, bits of precision. As far as we are aware, this is the first stability analysis of any algorithm using O((k/√ε)poly(log n)) matrix-vector products with the matrix A to output a 1+ε approximate solution for the rank-k Schatten-p LRA problem.

Cite as

Praneeth Kacham and David P. Woodruff. Faster Algorithms for Schatten-p Low Rank Approximation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 55:1-55:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kacham_et_al:LIPIcs.APPROX/RANDOM.2024.55,
  author =	{Kacham, Praneeth and Woodruff, David P.},
  title =	{{Faster Algorithms for Schatten-p Low Rank Approximation}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{55:1--55:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.55},
  URN =		{urn:nbn:de:0030-drops-210488},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.55},
  annote =	{Keywords: Low Rank Approximation, Schatten Norm, Rectangular Matrix Multiplication, Stability Analysis}
}
Document
Solving Unique Games over Globally Hypercontractive Graphs

Authors: Mitali Bafna and Dor Minzer

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.

Cite as

Mitali Bafna and Dor Minzer. Solving Unique Games over Globally Hypercontractive Graphs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bafna_et_al:LIPIcs.CCC.2024.3,
  author =	{Bafna, Mitali and Minzer, Dor},
  title =	{{Solving Unique Games over Globally Hypercontractive Graphs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.3},
  URN =		{urn:nbn:de:0030-drops-203996},
  doi =		{10.4230/LIPIcs.CCC.2024.3},
  annote =	{Keywords: unique games, approximation algorithms}
}
Document
The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise

Authors: Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The class MIP^* of quantum multiprover interactive proof systems with entanglement is much more powerful than its classical counterpart MIP [Babai et al., 1991; Zhengfeng Ji et al., 2020; Zhengfeng Ji et al., 2020]: while MIP = NEXP, the quantum class MIP^* is equal to RE, a class including the halting problem. This is because the provers in MIP^* can share unbounded quantum entanglement. However, recent works [Qin and Yao, 2021; Qin and Yao, 2023] have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP^*[poly,O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) [Qin and Yao, 2021]. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP^*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or which are Lipschitz continuous.

Cite as

Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao. The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 30:1-30:71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.CCC.2024.30,
  author =	{Dong, Yangjing and Fu, Honghao and Natarajan, Anand and Qin, Minglong and Xu, Haochen and Yao, Penghui},
  title =	{{The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{30:1--30:71},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.30},
  URN =		{urn:nbn:de:0030-drops-204263},
  doi =		{10.4230/LIPIcs.CCC.2024.30},
  annote =	{Keywords: Interactive proofs, Quantum complexity theory, Quantum entanglement, Fourier analysis, Matrix analysis, Invariance principle, Derandomization, PCP, Locally testable code, Positivity testing}
}
Document
Track A: Algorithms, Complexity and Games
Random Separating Hyperplane Theorem and Learning Polytopes

Authors: Chiranjib Bhattacharyya, Ravindran Kannan, and Amit Kumar

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad applications. The theorem asserts that for a point a not in a closed convex set K, there is a hyperplane with K on one side and a strictly on the other side. Our first result, Random Separating Hyperplane Theorem (RSH), is a strengthening of this for polytopes. RSH asserts that if the distance between a and a polytope K with k vertices and unit diameter in ℜ^d is at least δ, where δ is a fixed constant in (0,1), then a randomly chosen hyperplane separates a and K with probability at least 1/poly(k) and margin at least Ω (δ/√d). RSH has algorithmic applications in learning polytopes. We consider a fundamental problem, denoted the "Hausdorff problem", of learning a unit diameter polytope K within Hausdorff distance δ, given an optimization oracle for K. Using RSH, we show that with polynomially many random queries to the optimization oracle, K can be approximated within error O(δ). To our knowledge, this is the first provable algorithm for the Hausdorff Problem in this setting. Building on this result, we show that if the vertices of K are well-separated, then an optimization oracle can be used to generate a list of points, each within distance O(δ) of K, with the property that the list contains a point close to each vertex of K. Further, we show how to prune this list to generate a (unique) approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g., topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace. Thus, our work yields the first efficient algorithm for finding approximations to the vertices of the latent polytope under the well-separatedness assumption. This assumption states that each vertex of K is far from the convex hull of the remaining vertices of K, and is much weaker than other assumptions behind algorithms in the literature which find vertices of the latent polytope.

Cite as

Chiranjib Bhattacharyya, Ravindran Kannan, and Amit Kumar. Random Separating Hyperplane Theorem and Learning Polytopes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 25:1-25:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharyya_et_al:LIPIcs.ICALP.2024.25,
  author =	{Bhattacharyya, Chiranjib and Kannan, Ravindran and Kumar, Amit},
  title =	{{Random Separating Hyperplane Theorem and Learning Polytopes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{25:1--25:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.25},
  URN =		{urn:nbn:de:0030-drops-201687},
  doi =		{10.4230/LIPIcs.ICALP.2024.25},
  annote =	{Keywords: Separating Hyperplane Theorem, Learning Polytopes, Optimization Oracles}
}
Document
Track A: Algorithms, Complexity and Games
Sublinear Time Eigenvalue Approximation via Random Sampling

Authors: Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, and Archan Ray

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the problem of approximating the eigenspectrum of a symmetric matrix A ∈ ℝ^{n×n} with bounded entries (i.e., ‖A‖_∞ ≤ 1). We present a simple sublinear time algorithm that approximates all eigenvalues of A up to additive error ±εn using those of a randomly sampled Õ((log³ n)/ε³)×Õ((log³ n)/ε³) principal submatrix. Our result can be viewed as a concentration bound on the complete eigenspectrum of a random submatrix, significantly extending known bounds on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of ± ε √{nnz(A)} and ±ε‖A‖_F when the rows of A can be sampled with probabilities proportional to their sparsities or their squared 𝓁₂ norms respectively. Here nnz(A) is the number of non-zero entries in A and ‖A‖_F is its Frobenius norm. Even for the strictly easier problems of approximating the singular values or testing the existence of large negative eigenvalues (Bakshi, Chepurko, and Jayaram, FOCS '20), our results are the first that take advantage of non-uniform sampling to give improved error bounds. From a technical perspective, our results require several new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for those of A. We complement our theoretical results with numerical simulations, which demonstrate the effectiveness of our algorithms in practice.

Cite as

Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, and Archan Ray. Sublinear Time Eigenvalue Approximation via Random Sampling. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bhattacharjee_et_al:LIPIcs.ICALP.2023.21,
  author =	{Bhattacharjee, Rajarshi and Dexter, Gregory and Drineas, Petros and Musco, Cameron and Ray, Archan},
  title =	{{Sublinear Time Eigenvalue Approximation via Random Sampling}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.21},
  URN =		{urn:nbn:de:0030-drops-180733},
  doi =		{10.4230/LIPIcs.ICALP.2023.21},
  annote =	{Keywords: sublinear algorithms, eigenvalue approximation, randomized linear algebra}
}
Document
APPROX
Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams

Authors: Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α be the cardinality of the largest independent set. Our goal is to estimate α in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating β, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating α and β. For unit-length intervals, we obtain a (2+ε)-approximation to α and β in poly(log(n)/ε) space. We also show a matching lower bound. Combined with the 3/2-approximation for insertion-only streams by Cabello and Perez-Lanterno [Cabello and Pérez-Lantero, 2017], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a (8√3/π)-approximation to α and β in poly(log(n)/ε) space, which is closely related to the hexagonal circle packing constant. Finally, we provide algorithms for estimating α for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating α and β, where the parameter is the ratio of maximum to minimum interval length.

Cite as

Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 64:1-64:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bakshi_et_al:LIPIcs.APPROX/RANDOM.2020.64,
  author =	{Bakshi, Ainesh and Chepurko, Nadiia and Woodruff, David P.},
  title =	{{Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{64:1--64:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.64},
  URN =		{urn:nbn:de:0030-drops-126679},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.64},
  annote =	{Keywords: Weighted Maximum Independent Set, Geometric Graphs, Turnstile Streams}
}
Document
Track A: Algorithms, Complexity and Games
Robust Communication-Optimal Distributed Clustering Algorithms

Authors: Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, and David P. Woodruff

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
In this work, we study the k-median and k-means clustering problems when the data is distributed across many servers and can contain outliers. While there has been a lot of work on these problems for worst-case instances, we focus on gaining a finer understanding through the lens of beyond worst-case analysis. Our main motivation is the following: for many applications such as clustering proteins by function or clustering communities in a social network, there is some unknown target clustering, and the hope is that running a k-median or k-means algorithm will produce clusterings which are close to matching the target clustering. Worst-case results can guarantee constant factor approximations to the optimal k-median or k-means objective value, but not closeness to the target clustering. Our first result is a distributed algorithm which returns a near-optimal clustering assuming a natural notion of stability, namely, approximation stability [Awasthi and Balcan, 2014], even when a constant fraction of the data are outliers. The communication complexity is O~(sk+z) where s is the number of machines, k is the number of clusters, and z is the number of outliers. Next, we show this amount of communication cannot be improved even in the setting when the input satisfies various non-worst-case assumptions. We give a matching Omega(sk+z) lower bound on the communication required both for approximating the optimal k-means or k-median cost up to any constant, and for returning a clustering that is close to the target clustering in Hamming distance. These lower bounds hold even when the data satisfies approximation stability or other common notions of stability, and the cluster sizes are balanced. Therefore, Omega(sk+z) is a communication bottleneck, even for real-world instances.

Cite as

Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, and David P. Woodruff. Robust Communication-Optimal Distributed Clustering Algorithms. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{awasthi_et_al:LIPIcs.ICALP.2019.18,
  author =	{Awasthi, Pranjal and Bakshi, Ainesh and Balcan, Maria-Florina and White, Colin and Woodruff, David P.},
  title =	{{Robust Communication-Optimal Distributed Clustering Algorithms}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.18},
  URN =		{urn:nbn:de:0030-drops-105942},
  doi =		{10.4230/LIPIcs.ICALP.2019.18},
  annote =	{Keywords: robust distributed clustering, communication complexity}
}
  • Refine by Author
  • 3 Woodruff, David P.
  • 2 Bakshi, Ainesh
  • 1 Alexandru, Cezar-Mihail
  • 1 Awasthi, Pranjal
  • 1 Bafna, Mitali
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Streaming models
  • 2 Theory of computation → Unsupervised learning and clustering
  • 1 Mathematics of computing → Computations on matrices
  • 1 Mathematics of computing → Mathematical analysis
  • 1 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 1 Derandomization
  • 1 Fourier analysis
  • 1 Geometric Graphs
  • 1 Interactive proofs
  • 1 Interval selection
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 5 2024
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail