Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)
Jelle Wemmenhove, Cosmin Manea, and Jim Portegies. Classification of Covering Spaces and Canonical Change of Basepoint. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{wemmenhove_et_al:LIPIcs.TYPES.2023.1, author = {Wemmenhove, Jelle and Manea, Cosmin and Portegies, Jim}, title = {{Classification of Covering Spaces and Canonical Change of Basepoint}}, booktitle = {29th International Conference on Types for Proofs and Programs (TYPES 2023)}, pages = {1:1--1:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-332-4}, ISSN = {1868-8969}, year = {2024}, volume = {303}, editor = {Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.1}, URN = {urn:nbn:de:0030-drops-204795}, doi = {10.4230/LIPIcs.TYPES.2023.1}, annote = {Keywords: Synthetic Homotopy Theory, Homotopy Type Theory, Covering Spaces, Change-of-Basepoint Isomorphism} }
Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)
Camil Champin, Samuel Mimram, and Émile Oleon. Delooping Generated Groups in Homotopy Type Theory. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 6:1-6:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{champin_et_al:LIPIcs.FSCD.2024.6, author = {Champin, Camil and Mimram, Samuel and Oleon, \'{E}mile}, title = {{Delooping Generated Groups in Homotopy Type Theory}}, booktitle = {9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)}, pages = {6:1--6:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-323-2}, ISSN = {1868-8969}, year = {2024}, volume = {299}, editor = {Rehof, Jakob}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.6}, URN = {urn:nbn:de:0030-drops-203356}, doi = {10.4230/LIPIcs.FSCD.2024.6}, annote = {Keywords: homotopy type theory, delooping, group, generator, Cayley graph} }
Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)
Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg. Synthetic Integral Cohomology in Cubical Agda. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{brunerie_et_al:LIPIcs.CSL.2022.11, author = {Brunerie, Guillaume and Ljungstr\"{o}m, Axel and M\"{o}rtberg, Anders}, title = {{Synthetic Integral Cohomology in Cubical Agda}}, booktitle = {30th EACSL Annual Conference on Computer Science Logic (CSL 2022)}, pages = {11:1--11:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-218-1}, ISSN = {1868-8969}, year = {2022}, volume = {216}, editor = {Manea, Florin and Simpson, Alex}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.11}, URN = {urn:nbn:de:0030-drops-157310}, doi = {10.4230/LIPIcs.CSL.2022.11}, annote = {Keywords: Synthetic Homotopy Theory, Cohomology Theory, Cubical Agda} }
Feedback for Dagstuhl Publishing