7 Search Results for "Chatterjee, Prerona"


Document
Determinants vs. Algebraic Branching Programs

Authors: Abhranil Chatterjee, Mrinal Kumar, and Ben Lee Volk

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We show that for every homogeneous polynomial of degree d, if it has determinantal complexity at most s, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most O(d⁵s). Moreover, we show that for most homogeneous polynomials, the width of the resulting homogeneous ABP is just s-1 and the size is at most O(ds). Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree [Mrinal Kumar, 2019; Prerona Chatterjee et al., 2022], and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor [Mrinal Kumar and Ben Lee Volk, 2022]. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent [Meena Mahajan and V. Vinay, 1997], the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.

Cite as

Abhranil Chatterjee, Mrinal Kumar, and Ben Lee Volk. Determinants vs. Algebraic Branching Programs. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 27:1-27:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.ITCS.2024.27,
  author =	{Chatterjee, Abhranil and Kumar, Mrinal and Volk, Ben Lee},
  title =	{{Determinants vs. Algebraic Branching Programs}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{27:1--27:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.27},
  URN =		{urn:nbn:de:0030-drops-195550},
  doi =		{10.4230/LIPIcs.ITCS.2024.27},
  annote =	{Keywords: Determinant, Algebraic Branching Program, Lower Bounds, Singular Variety}
}
Document
Monotone Classes Beyond VNP

Authors: Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
In this work, we study the natural monotone analogues of various equivalent definitions of VPSPACE: a well studied class (Poizat 2008, Koiran & Perifel 2009, Malod 2011, Mahajan & Rao 2013) that is believed to be larger than VNP. We observe that these monotone analogues are not equivalent unlike their non-monotone counterparts, and propose monotone VPSPACE (mVPSPACE) to be defined as the monotone analogue of Poizat’s definition. With this definition, mVPSPACE turns out to be exponentially stronger than mVNP and also satisfies several desirable closure properties that the other analogues may not. Our initial goal was to understand the monotone complexity of transparent polynomials, a concept that was recently introduced by Hrubeš & Yehudayoff (2021). In that context, we show that transparent polynomials of large sparsity are hard for the monotone analogues of all the known definitions of VPSPACE, except for the one due to Poizat.

Cite as

Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse. Monotone Classes Beyond VNP. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.FSTTCS.2023.11,
  author =	{Chatterjee, Prerona and Gajjar, Kshitij and Tengse, Anamay},
  title =	{{Monotone Classes Beyond VNP}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.11},
  URN =		{urn:nbn:de:0030-drops-193846},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.11},
  annote =	{Keywords: Algebraic Complexity, Monotone Computation, VPSPACE, Transparent Polynomials}
}
Document
New Lower Bounds Against Homogeneous Non-Commutative Circuits

Authors: Prerona Chatterjee and Pavel Hrubeš

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree d which requires homogeneous non-commutative circuit of size Ω(d/log d). For an n-variate polynomial with n > 1, the result can be improved to Ω(nd), if d ≤ n, or Ω(nd (log n)/(log d)), if d ≥ n. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.

Cite as

Prerona Chatterjee and Pavel Hrubeš. New Lower Bounds Against Homogeneous Non-Commutative Circuits. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 13:1-13:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2023.13,
  author =	{Chatterjee, Prerona and Hrube\v{s}, Pavel},
  title =	{{New Lower Bounds Against Homogeneous Non-Commutative Circuits}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{13:1--13:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.13},
  URN =		{urn:nbn:de:0030-drops-182835},
  doi =		{10.4230/LIPIcs.CCC.2023.13},
  annote =	{Keywords: Algebraic circuit complexity, Non-Commutative Circuits, Homogeneous Computation, Lower bounds against algebraic circuits}
}
Document
If VNP Is Hard, Then so Are Equations for It

Authors: Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and Anamay Tengse

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
Assuming that the Permanent polynomial requires algebraic circuits of exponential size, we show that the class VNP does not have efficiently computable equations. In other words, any nonzero polynomial that vanishes on the coefficient vectors of all polynomials in the class VNP requires algebraic circuits of super-polynomial size. In a recent work of Chatterjee, Kumar, Ramya, Saptharishi and Tengse (FOCS 2020), it was shown that the subclasses of VP and VNP consisting of polynomials with bounded integer coefficients do have equations with small algebraic circuits. Their work left open the possibility that these results could perhaps be extended to all of VP or VNP. The results in this paper show that assuming the hardness of Permanent, at least for VNP, allowing polynomials with large coefficients does indeed incur a significant blow up in the circuit complexity of equations.

Cite as

Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and Anamay Tengse. If VNP Is Hard, Then so Are Equations for It. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 44:1-44:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kumar_et_al:LIPIcs.STACS.2022.44,
  author =	{Kumar, Mrinal and Ramya, C. and Saptharishi, Ramprasad and Tengse, Anamay},
  title =	{{If VNP Is Hard, Then so Are Equations for It}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{44:1--44:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.44},
  URN =		{urn:nbn:de:0030-drops-158547},
  doi =		{10.4230/LIPIcs.STACS.2022.44},
  annote =	{Keywords: Computational Complexity, Algebraic Circuits, Algebraic Natural Proofs}
}
Document
Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

Authors: Prerona Chatterjee

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
The motivating question for this work is a long standing open problem, posed by Nisan [Noam Nisan, 1991], regarding the relative powers of algebraic branching programs (ABPs) and formulas in the non-commutative setting. Even though the general question remains open, we make some progress towards its resolution. To that effect, we generalise the notion of ordered polynomials in the non-commutative setting (defined by Hrubeš, Wigderson and Yehudayoff [Hrubeš et al., 2011]) to define abecedarian polynomials and models that naturally compute them. Our main contribution is a possible new approach towards resolving the VF_{nc} vs VBP_{nc} question, via lower bounds against abecedarian formulas. In particular, we show the following. There is an explicit n²-variate degree d abecedarian polynomial f_{n,d}(𝐱) such that - f_{n, d}(𝐱) can be computed by an abecedarian ABP of size O(nd); - any abecedarian formula computing f_{n, log n}(𝐱) must have size at least n^{Ω(log log n)}. We also show that a super-polynomial lower bound against abecedarian formulas for f_{log n, n}(𝐱) would separate the powers of formulas and ABPs in the non-commutative setting.

Cite as

Prerona Chatterjee. Separating ABPs and Some Structured Formulas in the Non-Commutative Setting. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chatterjee:LIPIcs.CCC.2021.7,
  author =	{Chatterjee, Prerona},
  title =	{{Separating ABPs and Some Structured Formulas in the Non-Commutative Setting}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.7},
  URN =		{urn:nbn:de:0030-drops-142812},
  doi =		{10.4230/LIPIcs.CCC.2021.7},
  annote =	{Keywords: Non-Commutative Formulas, Lower Bound, Separating ABPs and Formulas}
}
Document
A Quadratic Lower Bound for Algebraic Branching Programs

Authors: Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show that any Algebraic Branching Program (ABP) computing the polynomial ∑_{i=1}^n xⁿ_i has at least Ω(n²) vertices. This improves upon the lower bound of Ω(nlog n), which follows from the classical result of Baur and Strassen [Volker Strassen, 1973; Walter Baur and Volker Strassen, 1983], and extends the results of Kumar [Mrinal Kumar, 2019], which showed a quadratic lower bound for homogeneous ABPs computing the same polynomial. Our proof relies on a notion of depth reduction which is reminiscent of similar statements in the context of matrix rigidity, and shows that any small enough ABP computing the polynomial ∑_{i=1}^n xⁿ_i can be depth reduced to essentially a homogeneous ABP of the same size which computes the polynomial ∑_{i=1}^n xⁿ_i + ε(𝐱), for a structured "error polynomial" ε(𝐱). To complete the proof, we then observe that the lower bound in [Mrinal Kumar, 2019] is robust enough and continues to hold for all polynomials ∑_{i=1}^n xⁿ_i + ε(𝐱), where ε(𝐱) has the appropriate structure.

Cite as

Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. A Quadratic Lower Bound for Algebraic Branching Programs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2020.2,
  author =	{Chatterjee, Prerona and Kumar, Mrinal and She, Adrian and Volk, Ben Lee},
  title =	{{A Quadratic Lower Bound for Algebraic Branching Programs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.2},
  URN =		{urn:nbn:de:0030-drops-125546},
  doi =		{10.4230/LIPIcs.CCC.2020.2},
  annote =	{Keywords: Algebraic Branching Programs, Lower Bound}
}
Document
Constructing Faithful Homomorphisms over Fields of Finite Characteristic

Authors: Prerona Chatterjee and Ramprasad Saptharishi

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken et al. [Malte Beecken et al., 2013] and exploited by them and Agrawal et al. [Manindra Agrawal et al., 2016] to design algebraic independence based identity tests using the Jacobian criterion over characteristic zero fields. An analogue of such constructions over finite characteristic fields were unknown due to the failure of the Jacobian criterion over finite characteristic fields. Building on a recent criterion of Pandey, Saxena and Sinhababu [Anurag Pandey et al., 2018], we construct explicit faithful maps for some natural classes of polynomials in fields of positive characteristic, when a certain parameter called the inseparable degree of the underlying polynomials is bounded (this parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some of the results of Beecken, Mittmann and Saxena [Malte Beecken et al., 2013] and Agrawal, Saha, Saptharishi, Saxena [Manindra Agrawal et al., 2016] in the positive characteristic setting.

Cite as

Prerona Chatterjee and Ramprasad Saptharishi. Constructing Faithful Homomorphisms over Fields of Finite Characteristic. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.FSTTCS.2019.11,
  author =	{Chatterjee, Prerona and Saptharishi, Ramprasad},
  title =	{{Constructing Faithful Homomorphisms over Fields of Finite Characteristic}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{11:1--11:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.11},
  URN =		{urn:nbn:de:0030-drops-115733},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.11},
  annote =	{Keywords: Faithful Homomorphisms, Identity Testing, Algebraic Independence, Finite characteristic fields}
}
  • Refine by Author
  • 5 Chatterjee, Prerona
  • 3 Kumar, Mrinal
  • 2 Saptharishi, Ramprasad
  • 2 Tengse, Anamay
  • 2 Volk, Ben Lee
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Algebraic complexity theory
  • 1 Computing methodologies → Symbolic and algebraic manipulation
  • 1 Theory of computation → Circuit complexity

  • Refine by Keyword
  • 2 Lower Bound
  • 1 Algebraic Branching Program
  • 1 Algebraic Branching Programs
  • 1 Algebraic Circuits
  • 1 Algebraic Complexity
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2023
  • 1 2019
  • 1 2020
  • 1 2021
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail