10 Search Results for "Christandl, Matthias"


Document
Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Authors: Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.

Cite as

Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 14:1-14:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{burgisser_et_al:LIPIcs.CCC.2024.14,
  author =	{B\"{u}rgisser, Peter and Do\u{g}an, Mahmut Levent and Makam, Visu and Walter, Michael and Wigderson, Avi},
  title =	{{Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{14:1--14:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.14},
  URN =		{urn:nbn:de:0030-drops-204100},
  doi =		{10.4230/LIPIcs.CCC.2024.14},
  annote =	{Keywords: computational invariant theory, geometric complexity theory, orbit problems, abc-conjecture, closest vector problem}
}
Document
Dimension Independent Disentanglers from Unentanglement and Applications

Authors: Fernando Granha Jeronimo and Pei Wu

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Quantum entanglement, a distinctive form of quantum correlation, has become a key enabling ingredient in diverse applications in quantum computation, complexity, cryptography, etc. However, the presence of unwanted adversarial entanglement also poses challenges and even prevents the correct behaviour of many protocols and applications. In this paper, we explore methods to "break" the quantum correlations. Specifically, we construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input. In particular, we show: For every d,𝓁 ≥ k ∈ ℕ^+, there is an efficient channel Λ : ℂ^{d𝓁} ⊗ ℂ^{d𝓁} → ℂ^{dk} such that for every bipartite separable density operator ρ₁⊗ ρ₂, the output Λ(ρ₁⊗ρ₂) is close to a k-partite separable state. Concretely, for some distribution μ on states from C^d, ║ Λ(ρ₁⊗ρ₂) - ∫ |ψ⟩⟨ψ|^{⊗k} dμ(ψ) ║₁ ≤ Õ((k³/𝓁)^{1/4}). Moreover, Λ(|ψ⟩⟨ψ|^{⊗𝓁} ⊗ |ψ⟩⟨ψ|^{⊗𝓁}) = |ψ⟩⟨ψ|^{⊗k}. Without the bipartite unentanglement assumption, the above bound is conjectured to be impossible and would imply QMA(2) = QMA. Leveraging multipartite unentanglement ensured by our disentanglers, we achieve the following: (i) a new proof that QMA(2) admits arbitrary gap amplification; (ii) a variant of the swap test and product test with improved soundness, addressing a major limitation of their original versions. More importantly, we demonstrate that unentangled quantum proofs of almost general real amplitudes capture NEXP, thereby greatly relaxing the non-negative amplitudes assumption in the recent work of QMA^+(2) = NEXP [Jeronimo and Wu, STOC 2023]. Specifically, our findings show that to capture NEXP, it suffices to have unentangled proofs of the form |ψ⟩ = √a |ψ_{+}⟩ + √{1-a} |ψ_{-}⟩ where |ψ_{+}⟩ has non-negative amplitudes, |ψ_{-}⟩ only has negative amplitudes and |a-(1-a)| ≥ 1/poly(n) with a ∈ [0,1]. Additionally, we present a protocol achieving an almost largest possible completeness-soundness gap before obtaining QMA^ℝ(k) = NEXP, namely, a 1/poly(n) additive improvement to the gap results in this equality.

Cite as

Fernando Granha Jeronimo and Pei Wu. Dimension Independent Disentanglers from Unentanglement and Applications. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 26:1-26:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jeronimo_et_al:LIPIcs.CCC.2024.26,
  author =	{Jeronimo, Fernando Granha and Wu, Pei},
  title =	{{Dimension Independent Disentanglers from Unentanglement and Applications}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{26:1--26:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.26},
  URN =		{urn:nbn:de:0030-drops-204228},
  doi =		{10.4230/LIPIcs.CCC.2024.26},
  annote =	{Keywords: QMA(2), disentangler, quantum proofs}
}
Document
Track A: Algorithms, Complexity and Games
Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems

Authors: Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such that it is possible to induce any stabilizer state on any k qubits, by using only local operations and classical communications. These states generalize the notion of k-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph states that are optimal in size with n = Θ(k²) qubits. We also provide parameters for which a random graph state on Θ(k²) qubits is k-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k⁴) qubits. Both rely upon the incidence graph of the projective plane over a finite field 𝔽_q. This provides a major improvement over the previously known explicit construction of k-pairable graph states with n = O(2^{3k}), bringing forth a new and potentially powerful family of multipartite quantum resources.

Cite as

Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé. Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cautres_et_al:LIPIcs.ICALP.2024.36,
  author =	{Cautr\`{e}s, Maxime and Claudet, Nathan and Mhalla, Mehdi and Perdrix, Simon and Savin, Valentin and Thomass\'{e}, St\'{e}phan},
  title =	{{Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.36},
  URN =		{urn:nbn:de:0030-drops-201796},
  doi =		{10.4230/LIPIcs.ICALP.2024.36},
  annote =	{Keywords: Quantum networks, graph states, vertex-minors, k-pairability}
}
Document
Track A: Algorithms, Complexity and Games
Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters

Authors: Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to determine if there exists a homomorphism from an instance graph G to H. We study the complexity of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a linear ordering v_1,…,v_n of V(G) such that, for each i ∈ {1,…,n-1}, the number of edges with one endpoint in {v_1,…,v_i} and the other in {v_{i+1},…,v_n} is at most k. We aim, for each H, for algorithms for Hom(H) running in time c_H^k n^𝒪(1) and matching lower bounds that exclude c_H^{k⋅o(1)} n^𝒪(1) or c_H^{k(1-Ω(1))} n^𝒪(1) time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main contribution is strong evidence of a close connection between c_H and mimsup(H): - an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most mimsup(H)^k, - lower bounds that show that for almost all graphs H indeed we have c_H ≥ mimsup(H), assuming the (Strong) Exponential-Time Hypothesis, and - an algorithm with running time exp(𝒪(mimsup(H)⋅k log k)) n^𝒪(1). In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter tractable, when parameterized by cutwidth of G and mimsup(H). The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching number in the graph obtained by multiplying p copies of H via a certain graph product, where p tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of H. Such parameters play a central role in, among others, algebraic complexity theory and additive combinatorics. Our results tightly link the parameterized complexity of a problem to such an asymptotic matrix parameter for the first time.

Cite as

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski. Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 77:1-77:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{groenland_et_al:LIPIcs.ICALP.2024.77,
  author =	{Groenland, Carla and Mannens, Isja and Nederlof, Jesper and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{77:1--77:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.77},
  URN =		{urn:nbn:de:0030-drops-202208},
  doi =		{10.4230/LIPIcs.ICALP.2024.77},
  annote =	{Keywords: graph homomorphism, cutwidth, asymptotic matrix parameters}
}
Document
Extended Abstract
Discreteness of Asymptotic Tensor Ranks (Extended Abstract)

Authors: Jop Briët, Matthias Christandl, Itai Leigh, Amir Shpilka, and Jeroen Zuiddam

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Tensor parameters that are amortized or regularized over large tensor powers, often called "asymptotic" tensor parameters, play a central role in several areas including algebraic complexity theory (constructing fast matrix multiplication algorithms), quantum information (entanglement cost and distillable entanglement), and additive combinatorics (bounds on cap sets, sunflower-free sets, etc.). Examples are the asymptotic tensor rank, asymptotic slice rank and asymptotic subrank. Recent works (Costa-Dalai, Blatter-Draisma-Rupniewski, Christandl-Gesmundo-Zuiddam) have investigated notions of discreteness (no accumulation points) or "gaps" in the values of such tensor parameters. We prove a general discreteness theorem for asymptotic tensor parameters of order-three tensors and use this to prove that (1) over any finite field (and in fact any finite set of coefficients in any field), the asymptotic subrank and the asymptotic slice rank have no accumulation points, and (2) over the complex numbers, the asymptotic slice rank has no accumulation points. Central to our approach are two new general lower bounds on the asymptotic subrank of tensors, which measures how much a tensor can be diagonalized. The first lower bound says that the asymptotic subrank of any concise three-tensor is at least the cube-root of the smallest dimension. The second lower bound says that any concise three-tensor that is "narrow enough" (has one dimension much smaller than the other two) has maximal asymptotic subrank. Our proofs rely on new lower bounds on the maximum rank in matrix subspaces that are obtained by slicing a three-tensor in the three different directions. We prove that for any concise tensor, the product of any two such maximum ranks must be large, and as a consequence there are always two distinct directions with large max-rank.

Cite as

Jop Briët, Matthias Christandl, Itai Leigh, Amir Shpilka, and Jeroen Zuiddam. Discreteness of Asymptotic Tensor Ranks (Extended Abstract). In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{briet_et_al:LIPIcs.ITCS.2024.20,
  author =	{Bri\"{e}t, Jop and Christandl, Matthias and Leigh, Itai and Shpilka, Amir and Zuiddam, Jeroen},
  title =	{{Discreteness of Asymptotic Tensor Ranks}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{20:1--20:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.20},
  URN =		{urn:nbn:de:0030-drops-195483},
  doi =		{10.4230/LIPIcs.ITCS.2024.20},
  annote =	{Keywords: Tensors, Asymptotic rank, Subrank, Slice rank, Restriction, Degeneration, Diagonalization, SLOCC}
}
Document
On the Multilinear Complexity of Associative Algebras

Authors: Markus Bläser, Hendrik Mayer, and Devansh Shringi

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
Christandl and Zuiddam [Matthias Christandl and Jeroen Zuiddam, 2019] study the multilinear complexity of d-fold matrix multiplication in the context of quantum communication complexity. Bshouty [Nader H. Bshouty, 2013] investigates the multilinear complexity of d-fold multiplication in commutative algebras to understand the size of so-called testers. The study of bilinear complexity is a classical topic in algebraic complexity theory, starting with the work by Strassen. However, there has been no systematic study of the multilinear complexity of multilinear maps. In the present work, we systematically investigate the multilinear complexity of d-fold multiplication in arbitrary associative algebras. We prove a multilinear generalization of the famous Alder-Strassen theorem, which is a lower bound for the bilinear complexity of the (2-fold) multiplication in an associative algebra. We show that the multilinear complexity of the d-fold multiplication has a lower bound of d ⋅ dim A - (d-1)t, where t is the number of maximal twosided ideals in A. This is optimal in the sense that there are algebras for which this lower bound is tight. Furthermore, we prove the following dichotomy that the quotient algebra A/rad A determines the complexity of the d-fold multiplication in A: When the semisimple algebra A/rad A is commutative, then the multilinear complexity of the d-fold multiplication in A is polynomial in d. On the other hand, when A/rad A is noncommutative, then the multilinear complexity of the d-fold multiplication in A is exponential in d.

Cite as

Markus Bläser, Hendrik Mayer, and Devansh Shringi. On the Multilinear Complexity of Associative Algebras. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{blaser_et_al:LIPIcs.STACS.2023.12,
  author =	{Bl\"{a}ser, Markus and Mayer, Hendrik and Shringi, Devansh},
  title =	{{On the Multilinear Complexity of Associative Algebras}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.12},
  URN =		{urn:nbn:de:0030-drops-176645},
  doi =		{10.4230/LIPIcs.STACS.2023.12},
  annote =	{Keywords: Multilinear computations, associative algebras, matrix multiplication, Alder-Strassen theorem}
}
Document
Larger Corner-Free Sets from Combinatorial Degenerations

Authors: Matthias Christandl, Omar Fawzi, Hoang Ta, and Jeroen Zuiddam

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
There is a large and important collection of Ramsey-type combinatorial problems, closely related to central problems in complexity theory, that can be formulated in terms of the asymptotic growth of the size of the maximum independent sets in powers of a fixed small hypergraph, also called the Shannon capacity. An important instance of this is the corner problem studied in the context of multiparty communication complexity in the Number On the Forehead (NOF) model. Versions of this problem and the NOF connection have seen much interest (and progress) in recent works of Linial, Pitassi and Shraibman (ITCS 2019) and Linial and Shraibman (CCC 2021). We introduce and study a general algebraic method for lower bounding the Shannon capacity of directed hypergraphs via combinatorial degenerations, a combinatorial kind of "approximation" of subgraphs that originates from the study of matrix multiplication in algebraic complexity theory (and which play an important role there) but which we use in a novel way. Using the combinatorial degeneration method, we make progress on the corner problem by explicitly constructing a corner-free subset in F₂ⁿ × F₂ⁿ of size Ω(3.39ⁿ/poly(n)), which improves the previous lower bound Ω(2.82ⁿ) of Linial, Pitassi and Shraibman (ITCS 2019) and which gets us closer to the best upper bound 4^{n - o(n)}. Our new construction of corner-free sets implies an improved NOF protocol for the Eval problem. In the Eval problem over a group G, three players need to determine whether their inputs x₁, x₂, x₃ ∈ G sum to zero. We find that the NOF communication complexity of the Eval problem over F₂ⁿ is at most 0.24n + 𝒪(log n), which improves the previous upper bound 0.5n + 𝒪(log n).

Cite as

Matthias Christandl, Omar Fawzi, Hoang Ta, and Jeroen Zuiddam. Larger Corner-Free Sets from Combinatorial Degenerations. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 48:1-48:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{christandl_et_al:LIPIcs.ITCS.2022.48,
  author =	{Christandl, Matthias and Fawzi, Omar and Ta, Hoang and Zuiddam, Jeroen},
  title =	{{Larger Corner-Free Sets from Combinatorial Degenerations}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{48:1--48:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.48},
  URN =		{urn:nbn:de:0030-drops-156441},
  doi =		{10.4230/LIPIcs.ITCS.2022.48},
  annote =	{Keywords: Corner-free sets, communication complexity, number on the forehead, combinatorial degeneration, hypergraphs, Shannon capacity, eval problem}
}
Document
Limits on the Universal Method for Matrix Multiplication

Authors: Josh Alman

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
In this work, we prove limitations on the known methods for designing matrix multiplication algorithms. Alman and Vassilevska Williams [Alman and Williams, 2018] recently defined the Universal Method, which substantially generalizes all the known approaches including Strassen’s Laser Method [V. Strassen, 1987] and Cohn and Umans' Group Theoretic Method [Cohn and Umans, 2003]. We prove concrete lower bounds on the algorithms one can design by applying the Universal Method to many different tensors. Our proofs use new tools for upper bounding the asymptotic slice rank of a wide range of tensors. Our main result is that the Universal method applied to any Coppersmith-Winograd tensor CW_q cannot yield a bound on omega, the exponent of matrix multiplication, better than 2.16805. By comparison, it was previously only known that the weaker "Galactic Method" applied to CW_q could not achieve an exponent of 2. We also study the Laser Method (which is, in principle, a highly special case of the Universal Method) and prove that it is "complete" for matrix multiplication algorithms: when it applies to a tensor T, it achieves omega = 2 if and only if it is possible for the Universal method applied to T to achieve omega = 2. Hence, the Laser Method, which was originally used as an algorithmic tool, can also be seen as a lower bounding tool. For example, in their landmark paper, Coppersmith and Winograd [Coppersmith and Winograd, 1990] achieved a bound of omega <= 2.376, by applying the Laser Method to CW_q. By our result, the fact that they did not achieve omega=2 implies a lower bound on the Universal Method applied to CW_q. Indeed, if it were possible for the Universal Method applied to CW_q to achieve omega=2, then Coppersmith and Winograd’s application of the Laser Method would have achieved omega=2.

Cite as

Josh Alman. Limits on the Universal Method for Matrix Multiplication. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alman:LIPIcs.CCC.2019.12,
  author =	{Alman, Josh},
  title =	{{Limits on the Universal Method for Matrix Multiplication}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.12},
  URN =		{urn:nbn:de:0030-drops-108347},
  doi =		{10.4230/LIPIcs.CCC.2019.12},
  annote =	{Keywords: Matrix Multiplication, Laser Method, Slice Rank}
}
Document
Barriers for Fast Matrix Multiplication from Irreversibility

Authors: Matthias Christandl, Péter Vrana, and Jeroen Zuiddam

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent omega, is a central problem in algebraic complexity theory. The best upper bounds on omega, leading to the state-of-the-art omega <= 2.37.., have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on omega. We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of "irreversibility" of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give omega = 2. In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith - Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of "monomial" irreversibility.

Cite as

Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Barriers for Fast Matrix Multiplication from Irreversibility. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{christandl_et_al:LIPIcs.CCC.2019.26,
  author =	{Christandl, Matthias and Vrana, P\'{e}ter and Zuiddam, Jeroen},
  title =	{{Barriers for Fast Matrix Multiplication from Irreversibility}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.26},
  URN =		{urn:nbn:de:0030-drops-108487},
  doi =		{10.4230/LIPIcs.CCC.2019.26},
  annote =	{Keywords: Matrix multiplication exponent, barriers, laser method}
}
Document
Nondeterministic Quantum Communication Complexity: the Cyclic Equality Game and Iterated Matrix Multiplication

Authors: Harry Buhrman, Matthias Christandl, and Jeroen Zuiddam

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border support rank. This characterisation allows us to prove a log-rank conjecture posed by Villagra et al. for nondeterministic multiparty quantum communication with message passing. The support rank characterization of the communication model connects quantum communication complexity intimately to the theory of asymptotic entanglement transformation and algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a cycle graph, the complexity of this communication problem is closely related to the complexity of the computational problem of multiplying matrices, or more precisely, it equals the logarithm of the support rank of the iterated matrix multiplication tensor. We employ Strassen’s laser method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and we show how Young flattenings yield nontrivial complexity lower bounds.

Cite as

Harry Buhrman, Matthias Christandl, and Jeroen Zuiddam. Nondeterministic Quantum Communication Complexity: the Cyclic Equality Game and Iterated Matrix Multiplication. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{buhrman_et_al:LIPIcs.ITCS.2017.24,
  author =	{Buhrman, Harry and Christandl, Matthias and Zuiddam, Jeroen},
  title =	{{Nondeterministic Quantum Communication Complexity: the Cyclic Equality Game and Iterated Matrix Multiplication}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.24},
  URN =		{urn:nbn:de:0030-drops-81812},
  doi =		{10.4230/LIPIcs.ITCS.2017.24},
  annote =	{Keywords: quantum communication complexity, broadcast channel, number-in-hand, matrix multiplication, support rank}
}
  • Refine by Author
  • 4 Christandl, Matthias
  • 4 Zuiddam, Jeroen
  • 1 Alman, Josh
  • 1 Bläser, Markus
  • 1 Briët, Jop
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Algebraic complexity theory
  • 3 Theory of computation → Quantum information theory
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Combinatorial algorithms
  • 1 Mathematics of computing
  • Show More...

  • Refine by Keyword
  • 2 matrix multiplication
  • 1 Alder-Strassen theorem
  • 1 Asymptotic rank
  • 1 Corner-free sets
  • 1 Degeneration
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 5 2024
  • 2 2019
  • 1 2017
  • 1 2022
  • 1 2023