16 Search Results for "Fearnley, John"


Document
Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties

Authors: Manuela Canestrini, Ioanna Gogousou, Dimitrios Michail, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Sustainable transport is becoming an increasingly pressing issue, with two major pillars being the reduction of car usage and the promotion of public transport. One way to approach both of these pillars is through the large number of daily commute trips in urban areas, and their modal split. Previous research gathered knowledge on influencing factors on the modal split mainly through travel surveys. We take a different approach by analysing the "raw" network and the time-optimised trips on a multi-modal graph. For the case study of Vienna, Austria we investigate how the option to use a private car influences the modal split of routes towards the city centre. Additionally, we compare the modal split across seven inner districts and we relate properties of the public transport network to the respective share of public transport. The results suggest that different districts have varying options of public transport connections towards the city centre, with a share of public transport between about 5% up to a share of 45%. This reveals areas where investments in public transport could reduce commute times to the city centre. Regarding network properties, our findings suggest, that it is not sufficient to analyse the joint public transport network. Instead, individual public transport modalities should be examined. We show that the network length and the direction of the lines towards the city centre influence the proportion of subway and tram in the modal split.

Cite as

Manuela Canestrini, Ioanna Gogousou, Dimitrios Michail, and Ioannis Giannopoulos. Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canestrini_et_al:LIPIcs.COSIT.2024.10,
  author =	{Canestrini, Manuela and Gogousou, Ioanna and Michail, Dimitrios and Giannopoulos, Ioannis},
  title =	{{Revealing Differences in Public Transport Share Through District-Wise Comparison and Relating Them to Network Properties}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.10},
  URN =		{urn:nbn:de:0030-drops-208255},
  doi =		{10.4230/LIPIcs.COSIT.2024.10},
  annote =	{Keywords: Mobility, Modal Split, Transportation Networks}
}
Document
The Power of Counting Steps in Quantitative Games

Authors: Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study deterministic games of infinite duration played on graphs and focus on the strategy complexity of quantitative objectives. Such games are known to admit optimal memoryless strategies over finite graphs, but require infinite-memory strategies in general over infinite graphs. We provide new lower and upper bounds for the strategy complexity of mean-payoff and total-payoff objectives over infinite graphs, focusing on whether step-counter strategies (sometimes called Markov strategies) suffice to implement winning strategies. In particular, we show that over finitely branching arenas, three variants of limsup mean-payoff and total-payoff objectives admit winning strategies that are based either on a step counter or on a step counter and an additional bit of memory. Conversely, we show that for certain liminf total-payoff objectives, strategies resorting to a step counter and finite memory are not sufficient. For step-counter strategies, this settles the case of all classical quantitative objectives up to the second level of the Borel hierarchy.

Cite as

Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove. The Power of Counting Steps in Quantitative Games. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.CONCUR.2024.13,
  author =	{Bose, Sougata and Ibsen-Jensen, Rasmus and Purser, David and Totzke, Patrick and Vandenhove, Pierre},
  title =	{{The Power of Counting Steps in Quantitative Games}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.13},
  URN =		{urn:nbn:de:0030-drops-207852},
  doi =		{10.4230/LIPIcs.CONCUR.2024.13},
  annote =	{Keywords: Games on graphs, Markov strategies, quantitative objectives, infinite-state systems}
}
Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs

Authors: Marnix Suilen, Marck van der Vegt, and Sebastian Junges

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Markov Decision Processes (MDPs) model systems with uncertain transition dynamics. Multiple-environment MDPs (MEMDPs) extend MDPs. They intuitively reflect finite sets of MDPs that share the same state and action spaces but differ in the transition dynamics. The key objective in MEMDPs is to find a single strategy that satisfies a given objective in every associated MDP. The main result of this paper is PSPACE-completeness for almost-sure Rabin objectives in MEMDPs. This result clarifies the complexity landscape for MEMDPs and contrasts with results for the more general class of partially observable MDPs (POMDPs), where almost-sure reachability is already EXP-complete, and almost-sure Rabin objectives are undecidable.

Cite as

Marnix Suilen, Marck van der Vegt, and Sebastian Junges. A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{suilen_et_al:LIPIcs.CONCUR.2024.40,
  author =	{Suilen, Marnix and van der Vegt, Marck and Junges, Sebastian},
  title =	{{A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.40},
  URN =		{urn:nbn:de:0030-drops-208120},
  doi =		{10.4230/LIPIcs.CONCUR.2024.40},
  annote =	{Keywords: Markov Decision Processes, partial observability, linear-time Objectives}
}
Document
Track A: Algorithms, Complexity and Games
On the Smoothed Complexity of Combinatorial Local Search

Authors: Yiannis Giannakopoulos, Alexander Grosz, and Themistoklis Melissourgos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We propose a unifying framework for smoothed analysis of combinatorial local optimization problems, and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound ϕ on the probability density. The power of this tool can be demonstrated by instantiating it for various PLS-hard problems of interest to derive efficient smoothed running times (as a function of ϕ and the input size). Most notably, we focus on the important local optimization problem of finding pure Nash equilibria in Congestion Games, that has not been studied before from a smoothed analysis perspective. Specifically, we propose novel smoothed analysis models for general and Network Congestion Games, under various representations, including explicit, step-function, and polynomial resource latencies. We study PLS-hard instances of these problems and show that their standard local search algorithms run in polynomial smoothed time. Further applications of our framework to a wide range of additional combinatorial problems can be found in the full version of our paper.

Cite as

Yiannis Giannakopoulos, Alexander Grosz, and Themistoklis Melissourgos. On the Smoothed Complexity of Combinatorial Local Search. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 72:1-72:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{giannakopoulos_et_al:LIPIcs.ICALP.2024.72,
  author =	{Giannakopoulos, Yiannis and Grosz, Alexander and Melissourgos, Themistoklis},
  title =	{{On the Smoothed Complexity of Combinatorial Local Search}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{72:1--72:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.72},
  URN =		{urn:nbn:de:0030-drops-202154},
  doi =		{10.4230/LIPIcs.ICALP.2024.72},
  annote =	{Keywords: Smoothed Analysis, local search, better-response dynamics, PLS-hardness, combinatorial local optimization, congestion games, pure Nash equilibria}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
Document
Track A: Algorithms, Complexity and Games
Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents

Authors: Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide polynomial-time reductions between three search problems from three distinct areas: the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orientation (USO), and a variant of the α-Ham Sandwich problem. For all three settings, we show that "two choices are enough", meaning that the general non-binary version of the problem can be reduced in polynomial time to the binary version. This specifically means that generalized P-LCPs are equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by showing that both the P-LCP and our α-Ham Sandwich variant are equivalent to a new problem we introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as P-LCPs.

Cite as

Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber. Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{borzechowski_et_al:LIPIcs.ICALP.2024.32,
  author =	{Borzechowski, Michaela and Fearnley, John and Gordon, Spencer and Savani, Rahul and Schnider, Patrick and Weber, Simon},
  title =	{{Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.32},
  URN =		{urn:nbn:de:0030-drops-201751},
  doi =		{10.4230/LIPIcs.ICALP.2024.32},
  annote =	{Keywords: P-LCP, Unique Sink Orientation, \alpha-Ham Sandwich, search complexity, TFNP, UEOPL}
}
Document
Invited Talk
The Complexity of Gradient Descent (Invited Talk)

Authors: Rahul Savani

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
PPAD and PLS are successful classes that capture the complexity of important game-theoretic problems. For example, finding a mixed Nash equilibrium in a bimatrix game is PPAD-complete, and finding a pure Nash equilibrium in a congestion game is PLS-complete. Many important problems, such as solving a Simple Stochastic Game or finding a mixed Nash equilibrium of a congestion game, lie in both classes. It was strongly believed that their intersection, PPAD ∩ PLS, does not have natural complete problems. We show that it does: any problem that lies in both classes can be reduced in polynomial time to the problem of finding a stationary point of a continuously differentiable function on the domain [0,1]². Thus, as PPAD captures problems that can be solved by Lemke-Howson type complementary pivoting algorithms, and PLS captures problems that can be solved by local search, we show that PPAD ∩ PLS exactly captures problems that can be solved by Gradient Descent. This is joint work with John Fearnley, Paul Goldberg, and Alexandros Hollender. It appeared at STOC'21, where it was given a Best Paper Award [Fearnley et al., 2021].

Cite as

Rahul Savani. The Complexity of Gradient Descent (Invited Talk). In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 5:1-5:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{savani:LIPIcs.FSTTCS.2021.5,
  author =	{Savani, Rahul},
  title =	{{The Complexity of Gradient Descent}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{5:1--5:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.5},
  URN =		{urn:nbn:de:0030-drops-155167},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.5},
  annote =	{Keywords: Computational Complexity, Continuous Optimization, TFNP, PPAD, PLS, CLS, UEOPL}
}
Document
A Faster Algorithm for Finding Tarski Fixed Points

Authors: John Fearnley and Rahul Savani

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Dang et al. have given an algorithm that can find a Tarski fixed point in a k-dimensional lattice of width n using O(log^k n) queries [Chuangyin Dang et al., 2020]. Multiple authors have conjectured that this algorithm is optimal [Chuangyin Dang et al., 2020; Kousha Etessami et al., 2020], and indeed this has been proven for two-dimensional instances [Kousha Etessami et al., 2020]. We show that these conjectures are false in dimension three or higher by giving an O(log² n) query algorithm for the three-dimensional Tarski problem, which generalises to give an O(log^{k-1} n) query algorithm for the k-dimensional problem when k ≥ 3.

Cite as

John Fearnley and Rahul Savani. A Faster Algorithm for Finding Tarski Fixed Points. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fearnley_et_al:LIPIcs.STACS.2021.29,
  author =	{Fearnley, John and Savani, Rahul},
  title =	{{A Faster Algorithm for Finding Tarski Fixed Points}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.29},
  URN =		{urn:nbn:de:0030-drops-136741},
  doi =		{10.4230/LIPIcs.STACS.2021.29},
  annote =	{Keywords: query complexity, Tarski fixed points, total function problem}
}
Document
Track A: Algorithms, Complexity and Games
Tree Polymatrix Games Are PPAD-Hard

Authors: Argyrios Deligkas, John Fearnley, and Rahul Savani

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We prove that it is PPAD-hard to compute a Nash equilibrium in a tree polymatrix game with twenty actions per player. This is the first PPAD hardness result for a game with a constant number of actions per player where the interaction graph is acyclic. Along the way we show PPAD-hardness for finding an ε-fixed point of a 2D-LinearFIXP instance, when ε is any constant less than (√2 - 1)/2 ≈ 0.2071. This lifts the hardness regime from polynomially small approximations in k-dimensions to constant approximations in two-dimensions, and our constant is substantial when compared to the trivial upper bound of 0.5.

Cite as

Argyrios Deligkas, John Fearnley, and Rahul Savani. Tree Polymatrix Games Are PPAD-Hard. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 38:1-38:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{deligkas_et_al:LIPIcs.ICALP.2020.38,
  author =	{Deligkas, Argyrios and Fearnley, John and Savani, Rahul},
  title =	{{Tree Polymatrix Games Are PPAD-Hard}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{38:1--38:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.38},
  URN =		{urn:nbn:de:0030-drops-124458},
  doi =		{10.4230/LIPIcs.ICALP.2020.38},
  annote =	{Keywords: Nash Equilibria, Polymatrix Games, PPAD, Brouwer Fixed Points}
}
Document
Track A: Algorithms, Complexity and Games
Unique End of Potential Line

Authors: John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The complexity class CLS was proposed by Daskalakis and Papadimitriou in 2011 to understand the complexity of important NP search problems that admit both path following and potential optimizing algorithms. Here we identify a subclass of CLS - called UniqueEOPL - that applies a more specific combinatorial principle that guarantees unique solutions. We show that UniqueEOPL contains several important problems such as the P-matrix Linear Complementarity Problem, finding Fixed Point of Contraction Maps, and solving Unique Sink Orientations (USOs). UniqueEOPL seems to a proper subclass of CLS and looks more likely to be the right class for the problems of interest. We identify a problem - closely related to solving contraction maps and USOs - that is complete for UniqueEOPL. Our results also give the fastest randomised algorithm for P-matrix LCP.

Cite as

John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential Line. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fearnley_et_al:LIPIcs.ICALP.2019.56,
  author =	{Fearnley, John and Gordon, Spencer and Mehta, Ruta and Savani, Rahul},
  title =	{{Unique End of Potential Line}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{56:1--56:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.56},
  URN =		{urn:nbn:de:0030-drops-106327},
  doi =		{10.4230/LIPIcs.ICALP.2019.56},
  annote =	{Keywords: P-matrix linear complementarity problem, unique sink orientation, contraction map, TFNP, total search problems, continuous local search}
}
Document
Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and Information Management
Computing Exact Solutions of Consensus Halving and the Borsuk-Ulam Theorem

Authors: Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G. Spirakis

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study the problem of finding an exact solution to the consensus halving problem. While recent work has shown that the approximate version of this problem is PPA-complete [Filos-Ratsikas and Goldberg, 2018; Filos-Ratsikas and Goldberg, 2018], we show that the exact version is much harder. Specifically, finding a solution with n agents and n cuts is FIXP-hard, and deciding whether there exists a solution with fewer than n cuts is ETR-complete. We also give a QPTAS for the case where each agent’s valuation is a polynomial. Along the way, we define a new complexity class BU, which captures all problems that can be reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that FIXP subseteq BU subseteq TFETR and that LinearBU = PPA, where LinearBU is the subclass of BU in which the Borsuk-Ulam instance is specified by a linear arithmetic circuit.

Cite as

Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G. Spirakis. Computing Exact Solutions of Consensus Halving and the Borsuk-Ulam Theorem. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 138:1-138:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{deligkas_et_al:LIPIcs.ICALP.2019.138,
  author =	{Deligkas, Argyrios and Fearnley, John and Melissourgos, Themistoklis and Spirakis, Paul G.},
  title =	{{Computing Exact Solutions of Consensus Halving and the Borsuk-Ulam Theorem}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{138:1--138:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.138},
  URN =		{urn:nbn:de:0030-drops-107141},
  doi =		{10.4230/LIPIcs.ICALP.2019.138},
  annote =	{Keywords: PPA, FIXP, ETR, consensus halving, circuit, reduction, complexity class}
}
Document
Reachability Switching Games

Authors: John Fearnley, Martin Gairing, Matthias Mnich, and Rahul Savani

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In this paper, we study the problem of deciding the winner of reachability switching games. We study zero-, one-, and two-player variants of these games. We show that the zero-player case is NL-hard, the one-player case is NP-complete, and that the two-player case is PSPACE-hard and in EXPTIME. For the zero-player case, we also show P-hardness for a succinctly-represented model that maintains the upper bound of NP n coNP. For the one- and two-player cases, our results hold in both the natural, explicit model and succinctly-represented model. We also study the structure of winning strategies in these games, and in particular we show that exponential memory is required in both the one- and two-player settings.

Cite as

John Fearnley, Martin Gairing, Matthias Mnich, and Rahul Savani. Reachability Switching Games. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 124:1-124:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fearnley_et_al:LIPIcs.ICALP.2018.124,
  author =	{Fearnley, John and Gairing, Martin and Mnich, Matthias and Savani, Rahul},
  title =	{{Reachability Switching Games}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{124:1--124:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.124},
  URN =		{urn:nbn:de:0030-drops-91282},
  doi =		{10.4230/LIPIcs.ICALP.2018.124},
  annote =	{Keywords: Deterministic Random Walks, Model Checking, Reachability, Simple Stochastic Game, Switching Systems}
}
Document
Bounded Satisfiability for PCTL

Authors: Nathalie Bertrand, John Fearnley, and Sven Schewe

Published in: LIPIcs, Volume 16, Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL (2012)


Abstract
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability is a long standing open problem. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more applied problem of seeking models of a bounded size: we restrict our search to implementable - and therefore reasonably simple - models. We propose a procedure to decide whether or not a given PCTL formula has an implementable model by reducing it to an SMT problem. We have implemented our techniques and found that they can be applied to the practical problem of sanity checking - a procedure that allows a system designer to check whether their formula has an unexpectedly small model.

Cite as

Nathalie Bertrand, John Fearnley, and Sven Schewe. Bounded Satisfiability for PCTL. In Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), Volume 16, pp. 92-106, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{bertrand_et_al:LIPIcs.CSL.2012.92,
  author =	{Bertrand, Nathalie and Fearnley, John and Schewe, Sven},
  title =	{{Bounded Satisfiability for PCTL}},
  booktitle =	{Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL},
  pages =	{92--106},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-42-2},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{16},
  editor =	{C\'{e}gielski, Patrick and Durand, Arnaud},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.92},
  URN =		{urn:nbn:de:0030-drops-36667},
  doi =		{10.4230/LIPIcs.CSL.2012.92},
  annote =	{Keywords: Satisfiability, Temporal Logic, Probabilistic Logic}
}
  • Refine by Author
  • 8 Fearnley, John
  • 6 Savani, Rahul
  • 2 Deligkas, Argyrios
  • 2 Gordon, Spencer
  • 2 Melissourgos, Themistoklis
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Problems, reductions and completeness
  • 3 Theory of computation → Logic and verification
  • 2 Theory of computation → Algorithmic game theory
  • 1 Computing methodologies → Simulation evaluation
  • 1 General and reference → Experimentation
  • Show More...

  • Refine by Keyword
  • 3 TFNP
  • 2 PPAD
  • 2 UEOPL
  • 1 Brouwer Fixed Points
  • 1 CLS
  • Show More...

  • Refine by Type
  • 16 document

  • Refine by Publication Year
  • 8 2024
  • 2 2019
  • 2 2021
  • 1 2011
  • 1 2012
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail