17 Search Results for "Golovnev, Alexander"


Document
Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).

Cite as

Xin Li and Yan Zhong. Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CCC.2024.10,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.10},
  URN =		{urn:nbn:de:0030-drops-204060},
  doi =		{10.4230/LIPIcs.CCC.2024.10},
  annote =	{Keywords: Randomness Extractors, Affine, Read-once Linear Branching Programs, Low-degree polynomials, AC⁰ circuits}
}
Document
Local Enumeration and Majority Lower Bounds

Authors: Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard. Local Enumeration and Majority Lower Bounds. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.CCC.2024.17,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Pudl\'{a}k, Pavel and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration and Majority Lower Bounds}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.17},
  URN =		{urn:nbn:de:0030-drops-204136},
  doi =		{10.4230/LIPIcs.CCC.2024.17},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
Track A: Algorithms, Complexity and Games
Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH

Authors: Shuangle Li, Bingkai Lin, and Yuwei Liu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we present a new gap-creating randomized self-reduction for the parameterized Maximum Likelihood Decoding problem over 𝔽_p (k-MLD_p). The reduction takes a k-MLD_p instance with k⋅ n d-dimensional vectors as input, runs in O(d2^{O(k)}n^{1.01}) time for some computable function f, outputs a (3/2-ε)-Gap-k'-MLD_p instance for any ε > 0, where k' = O(k²log k). Using this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no algorithms can approximate k-MLD_p (and therefore its dual problem k-NCP_p) within factor (3/2-ε) in f(k)⋅ n^{o(√{k/log k})} time for any ε > 0. We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to amplify the (3/2-ε)-gap to any constant. As a result, we show that assuming ETH, no algorithms can approximate k-NCP_p and k-MDP_p within γ-factor in f(k)⋅ n^{o(k^{ε_γ})} time for some constant ε_γ > 0. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and Ribeiro (STOC 2023), we also obtain similar lower bounds for k-MDP_p, k-CVP_p and k-SVP_p. These results improve upon the previous f(k)⋅ n^{Ω(poly log k)} lower bounds for these problems under ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).

Cite as

Shuangle Li, Bingkai Lin, and Yuwei Liu. Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 107:1-107:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.107,
  author =	{Li, Shuangle and Lin, Bingkai and Liu, Yuwei},
  title =	{{Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{107:1--107:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.107},
  URN =		{urn:nbn:de:0030-drops-202500},
  doi =		{10.4230/LIPIcs.ICALP.2024.107},
  annote =	{Keywords: Nearest Codeword Problem, Hardness of Approximations, Fine-grained Complexity, Parameterized Complexity, Minimum Distance Problem, Shortest Vector Problem}
}
Document
Track A: Algorithms, Complexity and Games
Two-Source and Affine Non-Malleable Extractors for Small Entropy

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and have become important cornerstones in recent breakthroughs of explicit constructions of two-source extractors and affine extractors for small entropy. However, explicit constructions of non-malleable extractors appear to be much harder than standard extractors. Indeed, in the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate > 2/3 and 1-γ for some small constant γ > 0 respectively by Li (FOCS' 23). In this paper, we present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include: - Two-source and affine non-malleable extractors (over 𝖥₂) for sources on n bits with min-entropy k ≥ log^C n and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16). - Two-source and affine non-malleable extractors (over 𝖥₂) for sources on n bits with min-entropy k = O(log n) and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudlák, and Talebanfard (CCC' 22) as a generalization of several well studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different. Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.

Cite as

Xin Li and Yan Zhong. Two-Source and Affine Non-Malleable Extractors for Small Entropy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 108:1-108:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.108,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Two-Source and Affine Non-Malleable Extractors for Small Entropy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{108:1--108:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.108},
  URN =		{urn:nbn:de:0030-drops-202512},
  doi =		{10.4230/LIPIcs.ICALP.2024.108},
  annote =	{Keywords: Randomness Extractors, Non-malleable, Two-source, Affine}
}
Document
APPROX
The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems

Authors: Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the question of when an approximate search optimization problem is harder than the associated decision problem. Specifically, we study a natural and quite general model of black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function f: D → ℝ_{≥ 0} by making oracle queries to h_f : 𝒮 → ℝ_{≥ 0} satisfying min_{x ∈ S} f(x) ≤ h_f(S) ≤ γ ⋅ min_{x ∈ S} f(x) (*) for some γ ≥ 1 and any subset S in some allowed class of subsets 𝒮 of the domain D. (When the goal is to maximize f, h_f instead yields an approximation to the maximal value of f over S.) We show tight upper and lower bounds on the number of queries q needed to find even a γ'-approximate minimizer (or maximizer) for quite large γ' in a number of interesting settings, as follows. - For arbitrary functions f : {0,1}ⁿ → ℝ_{≥ 0}, where 𝒮 contains all subsets of the domain, we show that no branch-and-bound reduction can achieve γ' ≲ γ^{n/log q}, while a simple greedy approach achieves essentially γ^{n/log q}. - For a large class of MAX-CSPs, where 𝒮 := {S_w} contains each set of assignments to the variables induced by a partial assignment w, we show that no branch-and-bound reduction can do significantly better than essentially a random guess, even when the oracle h_f guarantees an approximation factor of γ ≈ 1+√{log(q)/n}. - For the Traveling Salesperson Problem (TSP), where 𝒮 := {S_p} contains each set of tours extending a path p, we show that no branch-and-bound reduction can achieve γ' ≲ (γ-1) n/log q. We also prove a nearly matching upper bound in our model. These results show an oracle model in which approximate search and decision are strongly separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also note two alternative interpretations of our results. First, if we view h_f as a data structure, then our results unconditionally rule out black-box search-to-decision reductions for certain data structure problems. Second, if we view h_f as an efficiently computable heuristic, then our results show that any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic than simply Eq. (*). Behind our results is a "useless oracle lemma," which allows us to argue that under certain conditions the oracle h_f is "useless," and which might be of independent interest. See also the full version [Alexander Golovnev et al., 2022].

Cite as

Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX/RANDOM.2023.10,
  author =	{Golovnev, Alexander and Guo, Siyao and Peters, Spencer and Stephens-Davidowitz, Noah},
  title =	{{The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.10},
  URN =		{urn:nbn:de:0030-drops-188351},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.10},
  annote =	{Keywords: search-to-decision reductions, oracles, constraint satisfaction, traveling salesman, discrete optimization}
}
Document
RANDOM
Range Avoidance for Constant Depth Circuits: Hardness and Algorithms

Authors: Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Range Avoidance (Avoid) is a total search problem where, given a Boolean circuit 𝖢: {0,1}ⁿ → {0,1}^m, m > n, the task is to find a y ∈ {0,1}^m outside the range of 𝖢. For an integer k ≥ 2, NC⁰_k-Avoid is a special case of Avoid where each output bit of 𝖢 depends on at most k input bits. While there is a very natural randomized algorithm for Avoid, a deterministic algorithm for the problem would have many interesting consequences. Ren, Santhanam, and Wang (FOCS 2022) and Guruswami, Lyu, and Wang (RANDOM 2022) proved that explicit constructions of functions of high formula complexity, rigid matrices, and optimal linear codes, reduce to NC⁰₄-Avoid, thus establishing conditional hardness of the NC⁰₄-Avoid problem. On the other hand, NC⁰₂-Avoid admits polynomial-time algorithms, leaving the question about the complexity of NC⁰₃-Avoid open. We give the first reduction of an explicit construction question to NC⁰₃-Avoid. Specifically, we prove that a polynomial-time algorithm (with an NP oracle) for NC⁰₃-Avoid for the case of m = n+n^{2/3} would imply an explicit construction of a rigid matrix, and, thus, a super-linear lower bound on the size of log-depth circuits. We also give deterministic polynomial-time algorithms for all NC⁰_k-Avoid problems for m ≥ n^{k-1}/log(n). Prior work required an NP oracle, and required larger stretch, m ≥ n^{k-1}.

Cite as

Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range Avoidance for Constant Depth Circuits: Hardness and Algorithms. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 65:1-65:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajulapalli_et_al:LIPIcs.APPROX/RANDOM.2023.65,
  author =	{Gajulapalli, Karthik and Golovnev, Alexander and Nagargoje, Satyajeet and Saraogi, Sidhant},
  title =	{{Range Avoidance for Constant Depth Circuits: Hardness and Algorithms}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{65:1--65:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.65},
  URN =		{urn:nbn:de:0030-drops-188901},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.65},
  annote =	{Keywords: Boolean function analysis, Explicit Constructions, Low-depth Circuits, Range Avoidance, Matrix Rigidity, Circuit Lower Bounds}
}
Document
APPROX
Sketching Approximability of (Weak) Monarchy Predicates

Authors: Chi-Ning Chou, Alexander Golovnev, Amirbehshad Shahrasbi, Madhu Sudan, and Santhoshini Velusamy

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every k ≥ 5, we show that CSPs where the underlying predicate is a pure monarchy function on k variables have no non-trivial sketching approximation algorithm in o(√n) space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by O(log(n)) space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously.

Cite as

Chi-Ning Chou, Alexander Golovnev, Amirbehshad Shahrasbi, Madhu Sudan, and Santhoshini Velusamy. Sketching Approximability of (Weak) Monarchy Predicates. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chou_et_al:LIPIcs.APPROX/RANDOM.2022.35,
  author =	{Chou, Chi-Ning and Golovnev, Alexander and Shahrasbi, Amirbehshad and Sudan, Madhu and Velusamy, Santhoshini},
  title =	{{Sketching Approximability of (Weak) Monarchy Predicates}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.35},
  URN =		{urn:nbn:de:0030-drops-171573},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.35},
  annote =	{Keywords: sketching algorithms, approximability, linear threshold functions}
}
Document
The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications

Authors: Alexander Golovnev and Ishay Haviv

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
The orthogonality dimension of a graph G = (V,E) over a field 𝔽 is the smallest integer t for which there exists an assignment of a vector u_v ∈ 𝔽^t with ⟨ u_v,u_v ⟩ ≠ 0 to every vertex v ∈ V, such that ⟨ u_v, u_{v'} ⟩ = 0 whenever v and v' are adjacent vertices in G. The study of the orthogonality dimension of graphs is motivated by various applications in information theory and in theoretical computer science. The contribution of the present work is two-fold. First, we prove that there exists a constant c such that for every sufficiently large integer t, it is NP-hard to decide whether the orthogonality dimension of an input graph over ℝ is at most t or at least 3t/2-c. At the heart of the proof lies a geometric result, which might be of independent interest, on a generalization of the orthogonality dimension parameter for the family of Kneser graphs, analogously to a long-standing conjecture of Stahl (J. Comb. Theo. Ser. B, 1976). Second, we study the smallest possible orthogonality dimension over finite fields of the complement of graphs that do not contain certain fixed subgraphs. In particular, we provide an explicit construction of triangle-free n-vertex graphs whose complement has orthogonality dimension over the binary field at most n^{1-δ} for some constant δ > 0. Our results involve constructions from the family of generalized Kneser graphs and they are motivated by the rigidity approach to circuit lower bounds. We use them to answer a couple of questions raised by Codenotti, Pudlák, and Resta (Theor. Comput. Sci., 2000), and in particular, to disprove their Odd Alternating Cycle Conjecture over every finite field.

Cite as

Alexander Golovnev and Ishay Haviv. The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.CCC.2021.8,
  author =	{Golovnev, Alexander and Haviv, Ishay},
  title =	{{The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{8:1--8:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.8},
  URN =		{urn:nbn:de:0030-drops-142829},
  doi =		{10.4230/LIPIcs.CCC.2021.8},
  annote =	{Keywords: Orthogonality dimension, minrank, rigidity, hardness of approximation, circuit complexity, chromatic number, Kneser graphs}
}
Document
The Complexity of Finding Fair Independent Sets in Cycles

Authors: Ishay Haviv

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Let G be a cycle graph and let V₁,…,V_m be a partition of its vertex set into m sets. An independent set S of G is said to fairly represent the partition if |S ∩ V_i| ≥ 1/2⋅|V_i| - 1 for all i ∈ [m]. It is known that for every cycle and every partition of its vertex set, there exists an independent set that fairly represents the partition (Aharoni et al., A Journey through Discrete Math., 2017). We prove that the problem of finding such an independent set is PPA-complete. As an application, we show that the problem of finding a monochromatic edge in a Schrijver graph, given a succinct representation of a coloring that uses fewer colors than its chromatic number, is PPA-complete as well. The work is motivated by the computational aspects of the "cycle plus triangles" problem and of its extensions.

Cite as

Ishay Haviv. The Complexity of Finding Fair Independent Sets in Cycles. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{haviv:LIPIcs.ITCS.2021.4,
  author =	{Haviv, Ishay},
  title =	{{The Complexity of Finding Fair Independent Sets in Cycles}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.4},
  URN =		{urn:nbn:de:0030-drops-135431},
  doi =		{10.4230/LIPIcs.ITCS.2021.4},
  annote =	{Keywords: Fair independent sets in cycles, the complexity class \{PPA\}, Schrijver graphs}
}
Document
Circuit Depth Reductions

Authors: Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
The best known size lower bounds against unrestricted circuits have remained around 3n for several decades. Moreover, the only known technique for proving lower bounds in this model, gate elimination, is inherently limited to proving lower bounds of less than 5n. In this work, we propose a non-gate-elimination approach for obtaining circuit lower bounds, via certain depth-three lower bounds. We prove that every (unbounded-depth) circuit of size s can be expressed as an OR of 2^{s/3.9} 16-CNFs. For DeMorgan formulas, the best known size lower bounds have been stuck at around n^{3-o(1)} for decades. Under a plausible hypothesis about probabilistic polynomials, we show that n^{4-ε}-size DeMorgan formulas have 2^{n^{1-Ω(ε)}}-size depth-3 circuits which are approximate sums of n^{1-Ω(ε)}-degree polynomials over F₂. While these structural results do not immediately lead to new lower bounds, they do suggest new avenues of attack on these longstanding lower bound problems. Our results complement the classical depth-3 reduction results of Valiant, which show that logarithmic-depth circuits of linear size can be computed by an OR of 2^{ε n} n^δ-CNFs, and slightly stronger results for series-parallel circuits. It is known that no purely graph-theoretic reduction could yield interesting depth-3 circuits from circuits of super-logarithmic depth. We overcome this limitation (for small-size circuits) by taking into account both the graph-theoretic and functional properties of circuits and formulas. We show that improvements of the following pseudorandom constructions imply super-linear circuit lower bounds for log-depth circuits via Valiant’s reduction: dispersers for varieties, correlation with constant degree polynomials, matrix rigidity, and hardness for depth-3 circuits with constant bottom fan-in. On the other hand, our depth reductions show that even modest improvements of the known constructions give elementary proofs of improved (but still linear) circuit lower bounds.

Cite as

Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit Depth Reductions. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.ITCS.2021.24,
  author =	{Golovnev, Alexander and Kulikov, Alexander S. and Williams, R. Ryan},
  title =	{{Circuit Depth Reductions}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.24},
  URN =		{urn:nbn:de:0030-drops-135633},
  doi =		{10.4230/LIPIcs.ITCS.2021.24},
  annote =	{Keywords: Circuit complexity, formula complexity, pseudorandomness, matrix rigidity}
}
Document
APPROX
Collapsing Superstring Conjecture

Authors: Alexander Golovnev, Alexander S. Kulikov, Alexander Logunov, Ivan Mihajlin, and Maksim Nikolaev

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
In the Shortest Common Superstring (SCS) problem, one is given a collection of strings, and needs to find a shortest string containing each of them as a substring. SCS admits 2 11/23-approximation in polynomial time (Mucha, SODA'13). While this algorithm and its analysis are technically involved, the 30 years old Greedy Conjecture claims that the trivial and efficient Greedy Algorithm gives a 2-approximation for SCS. We develop a graph-theoretic framework for studying approximation algorithms for SCS. The framework is reminiscent of the classical 2-approximation for Traveling Salesman: take two copies of an optimal solution, apply a trivial edge-collapsing procedure, and get an approximate solution. In this framework, we observe two surprising properties of SCS solutions, and we conjecture that they hold for all input instances. The first conjecture, that we call Collapsing Superstring conjecture, claims that there is an elementary way to transform any solution repeated twice into the same graph G. This conjecture would give an elementary 2-approximate algorithm for SCS. The second conjecture claims that not only the resulting graph G is the same for all solutions, but that G can be computed by an elementary greedy procedure called Greedy Hierarchical Algorithm. While the second conjecture clearly implies the first one, perhaps surprisingly we prove their equivalence. We support these equivalent conjectures by giving a proof for the special case where all input strings have length at most 3 (which until recently had been the only case where the Greedy Conjecture was proven). We also tested our conjectures on millions of instances of SCS. We prove that the standard Greedy Conjecture implies Greedy Hierarchical Conjecture, while the latter is sufficient for an efficient greedy 2-approximate approximation of SCS. Except for its (conjectured) good approximation ratio, the Greedy Hierarchical Algorithm provably finds a 3.5-approximation, and finds exact solutions for the special cases where we know polynomial time (not greedy) exact algorithms: (1) when the input strings form a spectrum of a string (2) when all input strings have length at most 2.

Cite as

Alexander Golovnev, Alexander S. Kulikov, Alexander Logunov, Ivan Mihajlin, and Maksim Nikolaev. Collapsing Superstring Conjecture. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 26:1-26:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX-RANDOM.2019.26,
  author =	{Golovnev, Alexander and Kulikov, Alexander S. and Logunov, Alexander and Mihajlin, Ivan and Nikolaev, Maksim},
  title =	{{Collapsing Superstring Conjecture}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{26:1--26:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.26},
  URN =		{urn:nbn:de:0030-drops-112411},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.26},
  annote =	{Keywords: superstring, shortest common superstring, approximation, greedy algorithms, greedy conjecture}
}
Document
RANDOM
String Matching: Communication, Circuits, and Learning

Authors: Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem.

Cite as

Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar. String Matching: Communication, Circuits, and Learning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 56:1-56:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX-RANDOM.2019.56,
  author =	{Golovnev, Alexander and G\"{o}\"{o}s, Mika and Reichman, Daniel and Shinkar, Igor},
  title =	{{String Matching: Communication, Circuits, and Learning}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{56:1--56:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.56},
  URN =		{urn:nbn:de:0030-drops-112717},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.56},
  annote =	{Keywords: string matching, communication complexity, circuit complexity, PAC learning}
}
Document
Approximating the Orthogonality Dimension of Graphs and Hypergraphs

Authors: Ishay Haviv

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
A t-dimensional orthogonal representation of a hypergraph is an assignment of nonzero vectors in R^t to its vertices, such that every hyperedge contains two vertices whose vectors are orthogonal. The orthogonality dimension of a hypergraph H, denoted by overline{xi}(H), is the smallest integer t for which there exists a t-dimensional orthogonal representation of H. In this paper we study computational aspects of the orthogonality dimension of graphs and hypergraphs. We prove that for every k >= 4, it is NP-hard (resp. quasi-NP-hard) to distinguish n-vertex k-uniform hypergraphs H with overline{xi}(H) <= 2 from those satisfying overline{xi}(H) >= Omega(log^delta n) for some constant delta>0 (resp. overline{xi}(H) >= Omega(log^{1-o(1)} n)). For graphs, we relate the NP-hardness of approximating the orthogonality dimension to a variant of a long-standing conjecture of Stahl. We also consider the algorithmic problem in which given a graph G with overline{xi}(G) <= 3 the goal is to find an orthogonal representation of G of as low dimension as possible, and provide a polynomial time approximation algorithm based on semidefinite programming.

Cite as

Ishay Haviv. Approximating the Orthogonality Dimension of Graphs and Hypergraphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{haviv:LIPIcs.MFCS.2019.39,
  author =	{Haviv, Ishay},
  title =	{{Approximating the Orthogonality Dimension of Graphs and Hypergraphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{39:1--39:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.39},
  URN =		{urn:nbn:de:0030-drops-109836},
  doi =		{10.4230/LIPIcs.MFCS.2019.39},
  annote =	{Keywords: orthogonal representations of hypergraphs, orthogonality dimension, hardness of approximation, Kneser and Schrijver graphs, semidefinite programming}
}
Document
Track A: Algorithms, Complexity and Games
AC^0[p] Lower Bounds Against MCSP via the Coin Problem

Authors: Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, and Avishay Tal

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an n-variate boolean function has circuit complexity less than a given parameter s. We prove that MCSP is hard for constant-depth circuits with mod p gates, for any prime p >= 2 (the circuit class AC^0[p]). Namely, we show that MCSP requires d-depth AC^0[p] circuits of size at least exp(N^{0.49/d}), where N=2^n is the size of an input truth table of an n-variate boolean function. Our circuit lower bound proof shows that MCSP can solve the coin problem: distinguish uniformly random N-bit strings from those generated using independent samples from a biased random coin which is 1 with probability 1/2+N^{-0.49}, and 0 otherwise. Solving the coin problem with such parameters is known to require exponentially large AC^0[p] circuits. Moreover, this also implies that MAJORITY is computable by a non-uniform AC^0 circuit of polynomial size that also has MCSP-oracle gates. The latter has a few other consequences for the complexity of MCSP, e.g., we get that any boolean function in NC^1 (i.e., computable by a polynomial-size formula) can also be computed by a non-uniform polynomial-size AC^0 circuit with MCSP-oracle gates.

Cite as

Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, and Avishay Tal. AC^0[p] Lower Bounds Against MCSP via the Coin Problem. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.ICALP.2019.66,
  author =	{Golovnev, Alexander and Ilango, Rahul and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina and Tal, Avishay},
  title =	{{AC^0\lbrackp\rbrack Lower Bounds Against MCSP via the Coin Problem}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{66:1--66:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.66},
  URN =		{urn:nbn:de:0030-drops-106422},
  doi =		{10.4230/LIPIcs.ICALP.2019.66},
  annote =	{Keywords: Minimum Circuit Size Problem (MCSP), circuit lower bounds, AC0\lbrackp\rbrack, coin problem, hybrid argument, MKTP, biased random boolean functions}
}
Document
The Minrank of Random Graphs

Authors: Alexander Golovnev, Oded Regev, and Omri Weinstein

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
The minrank of a directed graph G is the minimum rank of a matrix M that can be obtained from the adjacency matrix of G by switching some ones to zeros (i.e., deleting edges) and then setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and distributed storage, and to Valiant's approach for proving superlinear circuit lower bounds (Valiant, Boolean Function Complexity '92). We prove tight bounds on the minrank of directed Erdos-Renyi random graphs G(n,p) for all regimes of 0<p<1. In particular, for any constant p, we show that minrk(G) = Theta(n/log n) with high probability, where G is chosen from G(n,p). This bound gives a near quadratic improvement over the previous best lower bound of Omega(sqrt{n}) (Haviv and Langberg, ISIT'12), and partially settles an open problem raised by Lubetzky and Stav (FOCS '07). Our lower bound matches the well-known upper bound obtained by the "clique covering" solution, and settles the linear index coding problem for random graphs. Finally, our result suggests a new avenue of attack, via derandomization, on Valiant's approach for proving superlinear lower bounds for logarithmic-depth semilinear circuits.

Cite as

Alexander Golovnev, Oded Regev, and Omri Weinstein. The Minrank of Random Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 46:1-46:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX-RANDOM.2017.46,
  author =	{Golovnev, Alexander and Regev, Oded and Weinstein, Omri},
  title =	{{The Minrank of Random Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{46:1--46:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.46},
  URN =		{urn:nbn:de:0030-drops-75953},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.46},
  annote =	{Keywords: circuit complexity, index coding, information theory}
}
  • Refine by Author
  • 11 Golovnev, Alexander
  • 4 Kulikov, Alexander S.
  • 3 Haviv, Ishay
  • 2 Li, Xin
  • 2 Zhong, Yan
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Circuit complexity
  • 5 Theory of computation → Problems, reductions and completeness
  • 3 Theory of computation → Approximation algorithms analysis
  • 2 Mathematics of computing → Graph coloring
  • 2 Theory of computation → Pseudorandomness and derandomization
  • Show More...

  • Refine by Keyword
  • 5 circuit complexity
  • 2 Affine
  • 2 Randomness Extractors
  • 2 hardness of approximation
  • 2 lower bounds
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 4 2019
  • 4 2024
  • 3 2021
  • 2 2016
  • 2 2023
  • Show More...