7 Search Results for "Gratzer, Daniel"


Document
Two-Dimensional Kripke Semantics I: Presheaves

Authors: G. A. Kavvos

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
The study of modal logic has witnessed tremendous development following the introduction of Kripke semantics. However, recent developments in programming languages and type theory have led to a second way of studying modalities, namely through their categorical semantics. We show how the two correspond.

Cite as

G. A. Kavvos. Two-Dimensional Kripke Semantics I: Presheaves. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kavvos:LIPIcs.FSCD.2024.14,
  author =	{Kavvos, G. A.},
  title =	{{Two-Dimensional Kripke Semantics I: Presheaves}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{14:1--14:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.14},
  URN =		{urn:nbn:de:0030-drops-203438},
  doi =		{10.4230/LIPIcs.FSCD.2024.14},
  annote =	{Keywords: modal logic, categorical semantics, Kripke semantics, duality, open maps}
}
Document
Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics

Authors: Jonathan Sterling, Daniel Gratzer, and Lars Birkedal

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We develop a denotational semantics for general reference types in an impredicative version of guarded homotopy type theory, an adaptation of synthetic guarded domain theory to Voevodsky’s univalent foundations. We observe for the first time the profound impact of univalence on the denotational semantics of mutable state. Univalence automatically ensures that all computations are invariant under symmetries of the heap - a bountiful source of program equivalences. In particular, even the most simplistic univalent model enjoys many new equations that do not hold when the same constructions are carried out in the universes of traditional set-level (extensional) type theory.

Cite as

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 47:1-47:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.CSL.2024.47,
  author =	{Sterling, Jonathan and Gratzer, Daniel and Birkedal, Lars},
  title =	{{Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{47:1--47:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.47},
  URN =		{urn:nbn:de:0030-drops-196901},
  doi =		{10.4230/LIPIcs.CSL.2024.47},
  annote =	{Keywords: univalent foundations, homotopy type theory, impredicative encodings, synthetic guarded domain theory, guarded recursion, higher-order store, reference types}
}
Document
{mitten}: A Flexible Multimodal Proof Assistant

Authors: Philipp Stassen, Daniel Gratzer, and Lars Birkedal

Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)


Abstract
Recently, there has been a growing interest in type theories which include modalities, unary type constructors which need not commute with substitution. Here we focus on MTT [Daniel Gratzer et al., 2021], a general modal type theory which can internalize arbitrary collections of (dependent) right adjoints [Birkedal et al., 2020]. These modalities are specified by mode theories [Licata and Shulman, 2016], 2-categories whose objects corresponds to modes, morphisms to modalities, and 2-cells to natural transformations between modalities. We contribute a defunctionalized NbE algorithm which reduces the type-checking problem for MTT to deciding the word problem for the mode theory. The algorithm is restricted to the class of preordered mode theories - mode theories with at most one 2-cell between any pair of modalities. Crucially, the normalization algorithm does not depend on the particulars of the mode theory and can be applied without change to any preordered collection of modalities. Furthermore, we specify a bidirectional syntax for MTT together with a type-checking algorithm. We further contribute mitten, a flexible experimental proof assistant implementing these algorithms which supports all decidable preordered mode theories without alteration.

Cite as

Philipp Stassen, Daniel Gratzer, and Lars Birkedal. {mitten}: A Flexible Multimodal Proof Assistant. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{stassen_et_al:LIPIcs.TYPES.2022.6,
  author =	{Stassen, Philipp and Gratzer, Daniel and Birkedal, Lars},
  title =	{{\{mitten\}: A Flexible Multimodal Proof Assistant}},
  booktitle =	{28th International Conference on Types for Proofs and Programs (TYPES 2022)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-285-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{269},
  editor =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.6},
  URN =		{urn:nbn:de:0030-drops-184498},
  doi =		{10.4230/LIPIcs.TYPES.2022.6},
  annote =	{Keywords: Dependent type theory, guarded recursion, modal type theory, proof assistants}
}
Document
Sheaf Semantics of Termination-Insensitive Noninterference

Authors: Jonathan Sterling and Robert Harper

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
We propose a new sheaf semantics for secure information flow over a space of abstract behaviors, based on synthetic domain theory: security classes are open/closed partitions, types are sheaves, and redaction of sensitive information corresponds to restricting a sheaf to a closed subspace. Our security-aware computational model satisfies termination-insensitive noninterference automatically, and therefore constitutes an intrinsic alternative to state of the art extrinsic/relational models of noninterference. Our semantics is the latest application of Sterling and Harper’s recent re-interpretation of phase distinctions and noninterference in programming languages in terms of Artin gluing and topos-theoretic open/closed modalities. Prior applications include parametricity for ML modules, the proof of normalization for cubical type theory by Sterling and Angiuli, and the cost-aware logical framework of Niu et al. In this paper we employ the phase distinction perspective twice: first to reconstruct the syntax and semantics of secure information flow as a lattice of phase distinctions between "higher" and "lower" security, and second to verify the computational adequacy of our sheaf semantics with respect to a version of Abadi et al.’s dependency core calculus to which we have added a construct for declassifying termination channels.

Cite as

Jonathan Sterling and Robert Harper. Sheaf Semantics of Termination-Insensitive Noninterference. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2022.5,
  author =	{Sterling, Jonathan and Harper, Robert},
  title =	{{Sheaf Semantics of Termination-Insensitive Noninterference}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.5},
  URN =		{urn:nbn:de:0030-drops-162869},
  doi =		{10.4230/LIPIcs.FSCD.2022.5},
  annote =	{Keywords: information flow, noninterference, denotational semantics, phase distinction, Artin gluing, modal type theory, topos theory, synthetic domain theory, synthetic Tait computability}
}
Document
A Stratified Approach to Löb Induction

Authors: Daniel Gratzer and Lars Birkedal

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
Guarded type theory extends type theory with a handful of modalities and constants to encode productive recursion. While these theories have seen widespread use, the metatheory of guarded type theories, particularly guarded dependent type theories remains underdeveloped. We show that integrating Löb induction is the key obstruction to unifying guarded recursion and dependence in a well-behaved type theory and prove a no-go theorem sharply bounding such type theories. Based on these results, we introduce GuTT: a stratified guarded type theory. GuTT is properly two type theories, sGuTT and dGuTT. The former contains only propositional rules governing Löb induction but enjoys decidable type-checking while the latter extends the former with definitional equalities. Accordingly, dGuTT does not have decidable type-checking. We prove, however, a novel guarded canonicity theorem for dGuTT, showing that programs in dGuTT can be run. These two type theories work in concert, with users writing programs in sGuTT and running them in dGuTT.

Cite as

Daniel Gratzer and Lars Birkedal. A Stratified Approach to Löb Induction. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gratzer_et_al:LIPIcs.FSCD.2022.23,
  author =	{Gratzer, Daniel and Birkedal, Lars},
  title =	{{A Stratified Approach to L\"{o}b Induction}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.23},
  URN =		{urn:nbn:de:0030-drops-163048},
  doi =		{10.4230/LIPIcs.FSCD.2022.23},
  annote =	{Keywords: Dependent type theory, guarded recursion, modal type theory, canonicity, categorical gluing}
}
Document
Internal Parametricity for Cubical Type Theory

Authors: Evan Cavallo and Robert Harper

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, and we give an account of the identity extension lemma for internal parametricity.

Cite as

Evan Cavallo and Robert Harper. Internal Parametricity for Cubical Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.13,
  author =	{Cavallo, Evan and Harper, Robert},
  title =	{{Internal Parametricity for Cubical Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.13},
  URN =		{urn:nbn:de:0030-drops-116564},
  doi =		{10.4230/LIPIcs.CSL.2020.13},
  annote =	{Keywords: parametricity, cubical type theory, higher inductive types}
}
Document
Cubical Syntax for Reflection-Free Extensional Equality

Authors: Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We contribute XTT, a cubical reconstruction of Observational Type Theory [Altenkirch et al., 2007] which extends Martin-Löf’s intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel extension of the logical families or categorical gluing argument inspired by Coquand and Shulman [Coquand, 2018; Shulman, 2015]: every closed element of boolean type is derivably equal to either true or false.

Cite as

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31,
  author =	{Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel},
  title =	{{Cubical Syntax for Reflection-Free Extensional Equality}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31},
  URN =		{urn:nbn:de:0030-drops-105387},
  doi =		{10.4230/LIPIcs.FSCD.2019.31},
  annote =	{Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity}
}
  • Refine by Author
  • 4 Gratzer, Daniel
  • 3 Birkedal, Lars
  • 3 Sterling, Jonathan
  • 2 Harper, Robert
  • 1 Angiuli, Carlo
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Dependent type theory
  • 3 guarded recursion
  • 3 modal type theory
  • 2 canonicity
  • 2 categorical gluing
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2022
  • 2 2024
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail