4 Search Results for "Harms, Nathaniel"


Document
Track A: Algorithms, Complexity and Games
Optimal Adjacency Labels for Subgraphs of Cartesian Products

Authors: Louis Esperet, Nathaniel Harms, and Viktor Zamaraev

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
For any hereditary graph class ℱ, we construct optimal adjacency labeling schemes for the classes of subgraphs and induced subgraphs of Cartesian products of graphs in ℱ. As a consequence, we show that, if ℱ admits efficient adjacency labels (or, equivalently, small induced-universal graphs) meeting the information-theoretic minimum, then the classes of subgraphs and induced subgraphs of Cartesian products of graphs in ℱ do too. Our proof uses ideas from randomized communication complexity and hashing, and improves upon recent results of Chepoi, Labourel, and Ratel [Journal of Graph Theory, 2020].

Cite as

Louis Esperet, Nathaniel Harms, and Viktor Zamaraev. Optimal Adjacency Labels for Subgraphs of Cartesian Products. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 57:1-57:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{esperet_et_al:LIPIcs.ICALP.2023.57,
  author =	{Esperet, Louis and Harms, Nathaniel and Zamaraev, Viktor},
  title =	{{Optimal Adjacency Labels for Subgraphs of Cartesian Products}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{57:1--57:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.57},
  URN =		{urn:nbn:de:0030-drops-181093},
  doi =		{10.4230/LIPIcs.ICALP.2023.57},
  annote =	{Keywords: Adjacency labeling schemes, Cartesian product, Hypercubes}
}
Document
RANDOM
Sketching Distances in Monotone Graph Classes

Authors: Louis Esperet, Nathaniel Harms, and Andrey Kupavskii

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study the problems of adjacency sketching, small-distance sketching, and approximate distance threshold (ADT) sketching for monotone classes of graphs. The algorithmic problem is to assign random sketches to the vertices of any graph G in the class, so that adjacency, exact distance thresholds, or approximate distance thresholds of two vertices u,v can be decided (with probability at least 2/3) from the sketches of u and v, by a decoder that does not know the graph. The goal is to determine when sketches of constant size exist. Our main results are that, for monotone classes of graphs: constant-size adjacency sketches exist if and only if the class has bounded arboricity; constant-size small-distance sketches exist if and only if the class has bounded expansion; constant-size ADT sketches imply that the class has bounded expansion; any class of constant expansion (i.e. any proper minor closed class) has a constant-size ADT sketch; and a class may have arbitrarily small expansion without admitting a constant-size ADT sketch.

Cite as

Louis Esperet, Nathaniel Harms, and Andrey Kupavskii. Sketching Distances in Monotone Graph Classes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 18:1-18:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{esperet_et_al:LIPIcs.APPROX/RANDOM.2022.18,
  author =	{Esperet, Louis and Harms, Nathaniel and Kupavskii, Andrey},
  title =	{{Sketching Distances in Monotone Graph Classes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{18:1--18:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.18},
  URN =		{urn:nbn:de:0030-drops-171406},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.18},
  annote =	{Keywords: adjacency labelling, informative labelling, distance sketching, adjacency sketching, communication complexity}
}
Document
Track A: Algorithms, Complexity and Games
Downsampling for Testing and Learning in Product Distributions

Authors: Nathaniel Harms and Yuichi Yoshida

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study distribution-free property testing and learning problems where the unknown probability distribution is a product distribution over ℝ^d. For many important classes of functions, such as intersections of halfspaces, polynomial threshold functions, convex sets, and k-alternating functions, the known algorithms either have complexity that depends on the support size of the distribution, or are proven to work only for specific examples of product distributions. We introduce a general method, which we call downsampling, that resolves these issues. Downsampling uses a notion of "rectilinear isoperimetry" for product distributions, which further strengthens the connection between isoperimetry, testing and learning. Using this technique, we attain new efficient distribution-free algorithms under product distributions on ℝ^d: 1) A simpler proof for non-adaptive, one-sided monotonicity testing of functions [n]^d → {0,1}, and improved sample complexity for testing monotonicity over unknown product distributions, from O(d⁷) [Black, Chakrabarty, & Seshadhri, SODA 2020] to O(d³). 2) Polynomial-time agnostic learning algorithms for functions of a constant number of halfspaces, and constant-degree polynomial threshold functions; 3) An exp{O(dlog(dk))}-time agnostic learning algorithm, and an exp{O(dlog(dk))}-sample tolerant tester, for functions of k convex sets; and a 2^O(d) sample-based one-sided tester for convex sets; 4) An exp{O(k√d)}-time agnostic learning algorithm for k-alternating functions, and a sample-based tolerant tester with the same complexity.

Cite as

Nathaniel Harms and Yuichi Yoshida. Downsampling for Testing and Learning in Product Distributions. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 71:1-71:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{harms_et_al:LIPIcs.ICALP.2022.71,
  author =	{Harms, Nathaniel and Yoshida, Yuichi},
  title =	{{Downsampling for Testing and Learning in Product Distributions}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.71},
  URN =		{urn:nbn:de:0030-drops-164123},
  doi =		{10.4230/LIPIcs.ICALP.2022.71},
  annote =	{Keywords: property testing, learning, monotonicity, halfspaces, intersections of halfspaces, polynomial threshold functions}
}
Document
Universal Communication, Universal Graphs, and Graph Labeling

Authors: Nathaniel Harms

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We introduce a communication model called universal SMP, in which Alice and Bob receive a function f belonging to a family ℱ, and inputs x and y. Alice and Bob use shared randomness to send a message to a third party who cannot see f, x, y, or the shared randomness, and must decide f(x,y). Our main application of universal SMP is to relate communication complexity to graph labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other functions of two vertices x and y can be determined from the labels ℓ(x), ℓ(y). We give a universal SMP protocol using O(k^2) bits of communication for deciding whether two vertices have distance at most k in distributive lattices (generalizing the k-Hamming Distance problem in communication complexity), and explain how this implies a O(k^2 log n) labeling scheme for deciding dist(x,y) ≤ k on distributive lattices with size n; in contrast, we show that a universal SMP protocol for determining dist(x,y) ≤ 2 in modular lattices (a superset of distributive lattices) has super-constant Ω(n^{1/4}) communication cost. On the other hand, we demonstrate that many graph families known to have efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit constant-cost communication protocols for adjacency. Trees also have an O(k) protocol for deciding dist(x,y) ≤ k and planar graphs have an O(1) protocol for dist(x,y) ≤ 2, which implies a new O(log n) labeling scheme for the same problem on planar graphs.

Cite as

Nathaniel Harms. Universal Communication, Universal Graphs, and Graph Labeling. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 33:1-33:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{harms:LIPIcs.ITCS.2020.33,
  author =	{Harms, Nathaniel},
  title =	{{Universal Communication, Universal Graphs, and Graph Labeling}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{33:1--33:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.33},
  URN =		{urn:nbn:de:0030-drops-117182},
  doi =		{10.4230/LIPIcs.ITCS.2020.33},
  annote =	{Keywords: Universal graphs, graph labeling, distance labeling, planar graphs, lattices, hamming distance}
}
  • Refine by Author
  • 4 Harms, Nathaniel
  • 2 Esperet, Louis
  • 1 Kupavskii, Andrey
  • 1 Yoshida, Yuichi
  • 1 Zamaraev, Viktor

  • Refine by Classification
  • 2 Mathematics of computing → Probabilistic algorithms
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Graph coloring
  • 1 Mathematics of computing → Graph theory
  • 1 Mathematics of computing → Trees
  • Show More...

  • Refine by Keyword
  • 1 Adjacency labeling schemes
  • 1 Cartesian product
  • 1 Hypercubes
  • 1 Universal graphs
  • 1 adjacency labelling
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2022
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail