8 Search Results for "Harms, Nathaniel"


Document
Better Boosting of Communication Oracles, or Not

Authors: Nathaniel Harms and Artur Riazanov

Published in: LIPIcs, Volume 323, 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024)


Abstract
Suppose we have a two-party communication protocol for f which allows the parties to make queries to an oracle computing g; for example, they may query an Equality oracle. To translate this protocol into a randomized protocol, we must replace the oracle with a randomized subroutine for solving g. If q queries are made, the standard technique requires that we boost the error of each subroutine down to O(1/q), leading to communication complexity which grows as q log q. For which oracles g can this naïve boosting technique be improved? We focus on the oracles which can be computed by constant-cost randomized protocols, and show that the naïve boosting strategy can be improved for the Equality oracle but not the 1-Hamming Distance oracle. Two surprising consequences are (1) a new example of a problem where the cost of computing k independent copies grows superlinear in k, drastically simplifying the only previous example due to Blais & Brody (CCC 2019); and (2) a new proof that Equality is not complete for the class of constant-cost randomized communication (Harms, Wild, & Zamaraev, STOC 2022; Hambardzumyan, Hatami, & Hatami, Israel Journal of Mathematics 2022).

Cite as

Nathaniel Harms and Artur Riazanov. Better Boosting of Communication Oracles, or Not. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 25:1-25:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harms_et_al:LIPIcs.FSTTCS.2024.25,
  author =	{Harms, Nathaniel and Riazanov, Artur},
  title =	{{Better Boosting of Communication Oracles, or Not}},
  booktitle =	{44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-355-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{323},
  editor =	{Barman, Siddharth and Lasota, S{\l}awomir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-222143},
  doi =		{10.4230/LIPIcs.FSTTCS.2024.25},
  annote =	{Keywords: oracles, error reduction, communication complexity}
}
Document
RANDOM
Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions

Authors: Hadley Black

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study monotonicity testing of functions f : {0,1}^d → {0,1} using sample-based algorithms, which are only allowed to observe the value of f on points drawn independently from the uniform distribution. A classic result by Bshouty-Tamon (J. ACM 1996) proved that monotone functions can be learned with exp(Õ(min{(1/ε)√d,d})) samples and it is not hard to show that this bound extends to testing. Prior to our work the only lower bound for this problem was Ω(√{exp(d)/ε}) in the small ε parameter regime, when ε = O(d^{-3/2}), due to Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky (Combinatorica 2000). Thus, the sample complexity of monotonicity testing was wide open for ε ≫ d^{-3/2}. We resolve this question, obtaining a nearly tight lower bound of exp(Ω(min{(1/ε)√d,d})) for all ε at most a sufficiently small constant. In fact, we prove a much more general result, showing that the sample complexity of k-monotonicity testing and learning for functions f : {0,1}^d → [r] is exp(Ω(min{(rk/ε)√d,d})). For testing with one-sided error we show that the sample complexity is exp(Ω(d)). Beyond the hypercube, we prove nearly tight bounds (up to polylog factors of d,k,r,1/ε in the exponent) of exp(Θ̃(min{(rk/ε)√d,d})) on the sample complexity of testing and learning measurable k-monotone functions f : ℝ^d → [r] under product distributions. Our upper bound improves upon the previous bound of exp(Õ(min{(k/ε²)√d,d})) by Harms-Yoshida (ICALP 2022) for Boolean functions (r = 2).

Cite as

Hadley Black. Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 37:1-37:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{black:LIPIcs.APPROX/RANDOM.2024.37,
  author =	{Black, Hadley},
  title =	{{Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{37:1--37:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.37},
  URN =		{urn:nbn:de:0030-drops-210308},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.37},
  annote =	{Keywords: Property testing, learning, Boolean functions, monotonicity, k-monotonicity}
}
Document
Testing and Learning Convex Sets in the Ternary Hypercube

Authors: Hadley Black, Eric Blais, and Nathaniel Harms

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study the problems of testing and learning high-dimensional discrete convex sets. The simplest high-dimensional discrete domain where convexity is a non-trivial property is the ternary hypercube, {-1,0,1}ⁿ. The goal of this work is to understand structural combinatorial properties of convex sets in this domain and to determine the complexity of the testing and learning problems. We obtain the following results. Structural: We prove nearly tight bounds on the edge boundary of convex sets in {0,±1}ⁿ, showing that the maximum edge boundary of a convex set is Õ(n^{3/4})⋅3ⁿ, or equivalently that every convex set has influence Õ(n^{3/4}) and a convex set exists with influence Ω(n^{3/4}). Learning and sample-based testing: We prove upper and lower bounds of 3^{Õ(n^{3/4})} and 3^{Ω(√n)} for the task of learning convex sets under the uniform distribution from random examples. The analysis of the learning algorithm relies on our upper bound on the influence. Both the upper and lower bound also hold for the problem of sample-based testing with two-sided error. For sample-based testing with one-sided error we show that the sample-complexity is 3^{Θ(n)}. Testing with queries: We prove nearly matching upper and lower bounds of 3^{Θ̃(√n)} for one-sided error testing of convex sets with non-adaptive queries.

Cite as

Hadley Black, Eric Blais, and Nathaniel Harms. Testing and Learning Convex Sets in the Ternary Hypercube. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 15:1-15:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{black_et_al:LIPIcs.ITCS.2024.15,
  author =	{Black, Hadley and Blais, Eric and Harms, Nathaniel},
  title =	{{Testing and Learning Convex Sets in the Ternary Hypercube}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{15:1--15:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.15},
  URN =		{urn:nbn:de:0030-drops-195435},
  doi =		{10.4230/LIPIcs.ITCS.2024.15},
  annote =	{Keywords: Property testing, learning theory, convex sets, testing convexity, fluctuation}
}
Document
Distribution Testing with a Confused Collector

Authors: Renato Ferreira Pinto Jr. and Nathaniel Harms

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We are interested in testing properties of distributions with systematically mislabeled samples. Our goal is to make decisions about unknown probability distributions, using a sample that has been collected by a confused collector, such as a machine-learning classifier that has not learned to distinguish all elements of the domain. The confused collector holds an unknown clustering of the domain and an input distribution μ, and provides two oracles: a sample oracle which produces a sample from μ that has been labeled according to the clustering; and a label-query oracle which returns the label of a query point x according to the clustering. Our first set of results shows that identity, uniformity, and equivalence of distributions can be tested efficiently, under the earth-mover distance, with remarkably weak conditions on the confused collector, even when the unknown clustering is adversarial. This requires defining a variant of the distribution testing task (inspired by the recent testable learning framework of Rubinfeld & Vasilyan), where the algorithm should test a joint property of the distribution and its clustering. As an example, we get efficient testers when the distribution tester is allowed to reject if it detects that the confused collector clustering is "far" from being a decision tree. The second set of results shows that we can sometimes do significantly better when the clustering is random instead of adversarial. For certain one-dimensional random clusterings, we show that uniformity can be tested under the TV distance using Õ((√n)/(ρ^{3/2} ε²)) samples and zero queries, where ρ ∈ (0,1] controls the "resolution" of the clustering. We improve this to O((√n)/(ρ ε²)) when queries are allowed.

Cite as

Renato Ferreira Pinto Jr. and Nathaniel Harms. Distribution Testing with a Confused Collector. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 47:1-47:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferreirapintojr._et_al:LIPIcs.ITCS.2024.47,
  author =	{Ferreira Pinto Jr., Renato and Harms, Nathaniel},
  title =	{{Distribution Testing with a Confused Collector}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{47:1--47:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.47},
  URN =		{urn:nbn:de:0030-drops-195755},
  doi =		{10.4230/LIPIcs.ITCS.2024.47},
  annote =	{Keywords: Distribution testing, property testing, uniformity testing, identity testing, earth-mover distance, sublinear algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Adjacency Labels for Subgraphs of Cartesian Products

Authors: Louis Esperet, Nathaniel Harms, and Viktor Zamaraev

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
For any hereditary graph class ℱ, we construct optimal adjacency labeling schemes for the classes of subgraphs and induced subgraphs of Cartesian products of graphs in ℱ. As a consequence, we show that, if ℱ admits efficient adjacency labels (or, equivalently, small induced-universal graphs) meeting the information-theoretic minimum, then the classes of subgraphs and induced subgraphs of Cartesian products of graphs in ℱ do too. Our proof uses ideas from randomized communication complexity and hashing, and improves upon recent results of Chepoi, Labourel, and Ratel [Journal of Graph Theory, 2020].

Cite as

Louis Esperet, Nathaniel Harms, and Viktor Zamaraev. Optimal Adjacency Labels for Subgraphs of Cartesian Products. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 57:1-57:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{esperet_et_al:LIPIcs.ICALP.2023.57,
  author =	{Esperet, Louis and Harms, Nathaniel and Zamaraev, Viktor},
  title =	{{Optimal Adjacency Labels for Subgraphs of Cartesian Products}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{57:1--57:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.57},
  URN =		{urn:nbn:de:0030-drops-181093},
  doi =		{10.4230/LIPIcs.ICALP.2023.57},
  annote =	{Keywords: Adjacency labeling schemes, Cartesian product, Hypercubes}
}
Document
RANDOM
Sketching Distances in Monotone Graph Classes

Authors: Louis Esperet, Nathaniel Harms, and Andrey Kupavskii

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study the problems of adjacency sketching, small-distance sketching, and approximate distance threshold (ADT) sketching for monotone classes of graphs. The algorithmic problem is to assign random sketches to the vertices of any graph G in the class, so that adjacency, exact distance thresholds, or approximate distance thresholds of two vertices u,v can be decided (with probability at least 2/3) from the sketches of u and v, by a decoder that does not know the graph. The goal is to determine when sketches of constant size exist. Our main results are that, for monotone classes of graphs: constant-size adjacency sketches exist if and only if the class has bounded arboricity; constant-size small-distance sketches exist if and only if the class has bounded expansion; constant-size ADT sketches imply that the class has bounded expansion; any class of constant expansion (i.e. any proper minor closed class) has a constant-size ADT sketch; and a class may have arbitrarily small expansion without admitting a constant-size ADT sketch.

Cite as

Louis Esperet, Nathaniel Harms, and Andrey Kupavskii. Sketching Distances in Monotone Graph Classes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{esperet_et_al:LIPIcs.APPROX/RANDOM.2022.18,
  author =	{Esperet, Louis and Harms, Nathaniel and Kupavskii, Andrey},
  title =	{{Sketching Distances in Monotone Graph Classes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{18:1--18:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.18},
  URN =		{urn:nbn:de:0030-drops-171406},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.18},
  annote =	{Keywords: adjacency labelling, informative labelling, distance sketching, adjacency sketching, communication complexity}
}
Document
Track A: Algorithms, Complexity and Games
Downsampling for Testing and Learning in Product Distributions

Authors: Nathaniel Harms and Yuichi Yoshida

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study distribution-free property testing and learning problems where the unknown probability distribution is a product distribution over ℝ^d. For many important classes of functions, such as intersections of halfspaces, polynomial threshold functions, convex sets, and k-alternating functions, the known algorithms either have complexity that depends on the support size of the distribution, or are proven to work only for specific examples of product distributions. We introduce a general method, which we call downsampling, that resolves these issues. Downsampling uses a notion of "rectilinear isoperimetry" for product distributions, which further strengthens the connection between isoperimetry, testing and learning. Using this technique, we attain new efficient distribution-free algorithms under product distributions on ℝ^d: 1) A simpler proof for non-adaptive, one-sided monotonicity testing of functions [n]^d → {0,1}, and improved sample complexity for testing monotonicity over unknown product distributions, from O(d⁷) [Black, Chakrabarty, & Seshadhri, SODA 2020] to O(d³). 2) Polynomial-time agnostic learning algorithms for functions of a constant number of halfspaces, and constant-degree polynomial threshold functions; 3) An exp{O(dlog(dk))}-time agnostic learning algorithm, and an exp{O(dlog(dk))}-sample tolerant tester, for functions of k convex sets; and a 2^O(d) sample-based one-sided tester for convex sets; 4) An exp{O(k√d)}-time agnostic learning algorithm for k-alternating functions, and a sample-based tolerant tester with the same complexity.

Cite as

Nathaniel Harms and Yuichi Yoshida. Downsampling for Testing and Learning in Product Distributions. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{harms_et_al:LIPIcs.ICALP.2022.71,
  author =	{Harms, Nathaniel and Yoshida, Yuichi},
  title =	{{Downsampling for Testing and Learning in Product Distributions}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.71},
  URN =		{urn:nbn:de:0030-drops-164123},
  doi =		{10.4230/LIPIcs.ICALP.2022.71},
  annote =	{Keywords: property testing, learning, monotonicity, halfspaces, intersections of halfspaces, polynomial threshold functions}
}
Document
Universal Communication, Universal Graphs, and Graph Labeling

Authors: Nathaniel Harms

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We introduce a communication model called universal SMP, in which Alice and Bob receive a function f belonging to a family ℱ, and inputs x and y. Alice and Bob use shared randomness to send a message to a third party who cannot see f, x, y, or the shared randomness, and must decide f(x,y). Our main application of universal SMP is to relate communication complexity to graph labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other functions of two vertices x and y can be determined from the labels ℓ(x), ℓ(y). We give a universal SMP protocol using O(k^2) bits of communication for deciding whether two vertices have distance at most k in distributive lattices (generalizing the k-Hamming Distance problem in communication complexity), and explain how this implies a O(k^2 log n) labeling scheme for deciding dist(x,y) ≤ k on distributive lattices with size n; in contrast, we show that a universal SMP protocol for determining dist(x,y) ≤ 2 in modular lattices (a superset of distributive lattices) has super-constant Ω(n^{1/4}) communication cost. On the other hand, we demonstrate that many graph families known to have efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit constant-cost communication protocols for adjacency. Trees also have an O(k) protocol for deciding dist(x,y) ≤ k and planar graphs have an O(1) protocol for dist(x,y) ≤ 2, which implies a new O(log n) labeling scheme for the same problem on planar graphs.

Cite as

Nathaniel Harms. Universal Communication, Universal Graphs, and Graph Labeling. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 33:1-33:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{harms:LIPIcs.ITCS.2020.33,
  author =	{Harms, Nathaniel},
  title =	{{Universal Communication, Universal Graphs, and Graph Labeling}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{33:1--33:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.33},
  URN =		{urn:nbn:de:0030-drops-117182},
  doi =		{10.4230/LIPIcs.ITCS.2020.33},
  annote =	{Keywords: Universal graphs, graph labeling, distance labeling, planar graphs, lattices, hamming distance}
}
  • Refine by Author
  • 7 Harms, Nathaniel
  • 2 Black, Hadley
  • 2 Esperet, Louis
  • 1 Blais, Eric
  • 1 Ferreira Pinto Jr., Renato
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Property testing
  • 2 communication complexity
  • 2 learning
  • 2 monotonicity
  • 2 property testing
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 4 2024
  • 2 2022
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail