51 Search Results for "Kobayashi, Naoki"


Volume

LIPIcs, Volume 195

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)

FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference)

Editors: Naoki Kobayashi

Document
Invited Talk
Meaningfulness and Genericity in a Subsuming Framework (Invited Talk)

Authors: Delia Kesner, Victor Arrial, and Giulio Guerrieri

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper studies the notion of meaningfulness for a unifying framework called dBang-calculus, which subsumes both call-by-name (dCBN) and call-by-value (dCBV). We first define meaningfulness in dBang and then characterize it by means of typability and inhabitation in an associated non-idempotent intersection type system previously appearing in the literature. We validate the proposed notion of meaningfulness by showing two properties: (1) consistency of the smallest theory, called ℋ, equating all meaningless terms, and (2) genericity, stating that meaningless subterms have no bearing on the significance of meaningful terms. The theory ℋ is also shown to have a unique consistent and maximal extension ℋ*, which coincides with a well-known notion of observational equivalence. Last but not least, we show that the notions of meaningfulness and genericity in the literature for dCBN and dCBV are subsumed by the corresponding ones proposed here for the dBang-calculus.

Cite as

Delia Kesner, Victor Arrial, and Giulio Guerrieri. Meaningfulness and Genericity in a Subsuming Framework (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.FSCD.2024.1,
  author =	{Kesner, Delia and Arrial, Victor and Guerrieri, Giulio},
  title =	{{Meaningfulness and Genericity in a Subsuming Framework}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.1},
  URN =		{urn:nbn:de:0030-drops-203305},
  doi =		{10.4230/LIPIcs.FSCD.2024.1},
  annote =	{Keywords: Lambda calculus, Solvability, Meaningfulness, Inhabitation, Genericity}
}
Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
Mirroring Call-By-Need, or Values Acting Silly

Authors: Beniamino Accattoli and Adrienne Lancelot

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Call-by-need evaluation for the λ-calculus can be seen as merging the best of call-by-name and call-by-value, namely the wise erasing behaviour of the former and the wise duplicating behaviour of the latter. To better understand how duplication and erasure can be combined, we design a degenerated calculus, dubbed call-by-silly, that is symmetric to call-by-need in that it merges the worst of call-by-name and call-by-value, namely silly duplications by-name and silly erasures by-value. We validate the design of the call-by-silly calculus via rewriting properties and multi types. In particular, we mirror the main theorem about call-by-need - that is, its operational equivalence with call-by-name - showing that call-by-silly and call-by-value induce the same contextual equivalence. This fact shows the blindness with respect to efficiency of call-by-value contextual equivalence. We also define a call-by-silly strategy and measure its length via tight multi types. Lastly, we prove that the call-by-silly strategy computes evaluation sequences of maximal length in the calculus.

Cite as

Beniamino Accattoli and Adrienne Lancelot. Mirroring Call-By-Need, or Values Acting Silly. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.23,
  author =	{Accattoli, Beniamino and Lancelot, Adrienne},
  title =	{{Mirroring Call-By-Need, or Values Acting Silly}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.23},
  URN =		{urn:nbn:de:0030-drops-203527},
  doi =		{10.4230/LIPIcs.FSCD.2024.23},
  annote =	{Keywords: Lambda calculus, intersection types, call-by-value, call-by-need}
}
Document
Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

Authors: Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We describe a generic construction of non-wellfounded syntax involving variable binding and its monadic substitution operation. Our construction of the syntax and its substitution takes place in category theory, notably by using monoidal categories and strong functors between them. A language is specified by a multi-sorted binding signature, say Σ. First, we provide sufficient criteria for Σ to generate a language of possibly infinite terms, through ω-continuity. Second, we construct a monadic substitution operation for the language generated by Σ. A cornerstone in this construction is a mild generalization of the notion of heterogeneous substitution systems developed by Matthes and Uustalu; such a system encapsulates the necessary corecursion scheme for implementing substitution. The results are formalized in the Coq proof assistant, through the UniMath library of univalent mathematics.

Cite as

Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{matthes_et_al:LIPIcs.FSCD.2024.25,
  author =	{Matthes, Ralph and Wullaert, Kobe and Ahrens, Benedikt},
  title =	{{Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.25},
  URN =		{urn:nbn:de:0030-drops-203540},
  doi =		{10.4230/LIPIcs.FSCD.2024.25},
  annote =	{Keywords: Non-wellfounded syntax, Substitution, Monoidal categories, Actegories, Tensorial strength, Proof assistant Coq, UniMath library}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Deciding Linear Height and Linear Size-To-Height Increase of Macro Tree Transducers

Authors: Paul Gallot, Sebastian Maneth, Keisuke Nakano, and Charles Peyrat

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present a novel normal form for (total deterministic) macro tree transducers (mtts), called "depth proper normal form". If an mtt is in this normal form, then it is guaranteed that each parameter of each state appears at arbitrary depths in the output trees of that state. Intuitively, if some parameter only appears at certain bounded depths in the output trees of a state, then this parameter can be eliminated by in-lining the corresponding output paths at each call site of that state. We use regular look-ahead in order to determine which of the paths should be in-lined. As a consequence of changing the look-ahead, a parameter that was previously appearing at unbounded depths, may be appearing at bounded depths for some new look-ahead; for this reason, our construction has to be iterated to obtain an mtt in depth-normal form. Using the normal form, we can decide whether the translation of an mtt has linear height increase or has linear size-to-height increase.

Cite as

Paul Gallot, Sebastian Maneth, Keisuke Nakano, and Charles Peyrat. Deciding Linear Height and Linear Size-To-Height Increase of Macro Tree Transducers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 138:1-138:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gallot_et_al:LIPIcs.ICALP.2024.138,
  author =	{Gallot, Paul and Maneth, Sebastian and Nakano, Keisuke and Peyrat, Charles},
  title =	{{Deciding Linear Height and Linear Size-To-Height Increase of Macro Tree Transducers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{138:1--138:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.138},
  URN =		{urn:nbn:de:0030-drops-202818},
  doi =		{10.4230/LIPIcs.ICALP.2024.138},
  annote =	{Keywords: automata, formal language theory, macro tree transducer, normal form}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes

Authors: Patrick Baillot, Alexis Ghyselen, and Naoki Kobayashi

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We address the problem of analysing the complexity of concurrent programs written in Pi-calculus. We are interested in parallel complexity, or span, understood as the execution time in a model with maximal parallelism. A type system for parallel complexity has been recently proposed by the first two authors but it is too imprecise for non-linear channels and cannot analyse some concurrent processes. Aiming for a more precise analysis, we design a type system which builds on the concepts of sized types and usages. The sized types allow us to parametrize the complexity by the size of inputs, and the usages allow us to achieve a kind of rely-guarantee reasoning on the timing each process communicates with its environment. We prove that our new type system soundly estimates the parallel complexity, and show through examples that it is often more precise than the previous type system of the first two authors.

Cite as

Patrick Baillot, Alexis Ghyselen, and Naoki Kobayashi. Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 34:1-34:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baillot_et_al:LIPIcs.CONCUR.2021.34,
  author =	{Baillot, Patrick and Ghyselen, Alexis and Kobayashi, Naoki},
  title =	{{Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{34:1--34:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.34},
  URN =		{urn:nbn:de:0030-drops-144111},
  doi =		{10.4230/LIPIcs.CONCUR.2021.34},
  annote =	{Keywords: Type Systems, Pi-calculus, Process Calculi, Complexity Analysis, Usages, Sized Types}
}
Document
Complete Volume
LIPIcs, Volume 195, FSCD 2021, Complete Volume

Authors: Naoki Kobayashi

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
LIPIcs, Volume 195, FSCD 2021, Complete Volume

Cite as

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 1-634, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{kobayashi:LIPIcs.FSCD.2021,
  title =	{{LIPIcs, Volume 195, FSCD 2021, Complete Volume}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{1--634},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021},
  URN =		{urn:nbn:de:0030-drops-142371},
  doi =		{10.4230/LIPIcs.FSCD.2021},
  annote =	{Keywords: LIPIcs, Volume 195, FSCD 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Naoki Kobayashi

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kobayashi:LIPIcs.FSCD.2021.0,
  author =	{Kobayashi, Naoki},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.0},
  URN =		{urn:nbn:de:0030-drops-142382},
  doi =		{10.4230/LIPIcs.FSCD.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Duality in Action (Invited Talk)

Authors: Paul Downen and Zena M. Ariola

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
The duality between "true" and "false" is a hallmark feature of logic. We show how this duality can be put to use in the theory and practice of programming languages and their implementations, too. Starting from a foundation of constructive logic as dialogues, we illustrate how it describes a symmetric language for computation, and survey several applications of the dualities found therein.

Cite as

Paul Downen and Zena M. Ariola. Duality in Action (Invited Talk). In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 1:1-1:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{downen_et_al:LIPIcs.FSCD.2021.1,
  author =	{Downen, Paul and Ariola, Zena M.},
  title =	{{Duality in Action}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{1:1--1:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.1},
  URN =		{urn:nbn:de:0030-drops-142390},
  doi =		{10.4230/LIPIcs.FSCD.2021.1},
  annote =	{Keywords: Duality, Logic, Curry-Howard, Sequent Calculus, Rewriting, Compilation}
}
Document
Invited Talk
Completion and Reduction Orders (Invited Talk)

Authors: Nao Hirokawa

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
We present three techniques for improving the Knuth-Bendix completion procedure and its variants: An order extension by semantic labeling, a new confluence criterion for terminating term rewrite systems, and inter-reduction for maximal completion.

Cite as

Nao Hirokawa. Completion and Reduction Orders (Invited Talk). In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 2:1-2:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hirokawa:LIPIcs.FSCD.2021.2,
  author =	{Hirokawa, Nao},
  title =	{{Completion and Reduction Orders}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{2:1--2:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.2},
  URN =		{urn:nbn:de:0030-drops-142403},
  doi =		{10.4230/LIPIcs.FSCD.2021.2},
  annote =	{Keywords: term rewriting, completion, reduction order}
}
Document
Invited Talk
Process-As-Formula Interpretation: A Substructural Multimodal View (Invited Talk)

Authors: Elaine Pimentel, Carlos Olarte, and Vivek Nigam

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
In this survey, we show how the processes-as-formulas interpretation, where computations and proof-search are strongly connected, can be used to specify different concurrent behaviors as logical theories. The proposed interpretation is parametric and modular, and it faithfully captures behaviors such as: Linear and spatial computations, epistemic state of agents, and preferences in concurrent systems. The key for this modularity is the incorporation of multimodalities in a resource aware logic, together with the ability of quantifying on such modalities. We achieve tight adequacy theorems by relying on a focusing discipline that allows for controlling the proof search process.

Cite as

Elaine Pimentel, Carlos Olarte, and Vivek Nigam. Process-As-Formula Interpretation: A Substructural Multimodal View (Invited Talk). In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{pimentel_et_al:LIPIcs.FSCD.2021.3,
  author =	{Pimentel, Elaine and Olarte, Carlos and Nigam, Vivek},
  title =	{{Process-As-Formula Interpretation: A Substructural Multimodal View}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{3:1--3:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.3},
  URN =		{urn:nbn:de:0030-drops-142414},
  doi =		{10.4230/LIPIcs.FSCD.2021.3},
  annote =	{Keywords: Linear logic, proof theory, process calculi}
}
Document
Invited Talk
Some Formal Structures in Probability (Invited Talk)

Authors: Sam Staton

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
This invited talk will discuss how developments in the Formal Structures for Computation and Deduction can also suggest new directions for the foundations of probability theory. I plan to focus on two aspects: abstraction, and laziness. I plan to highlight two challenges: higher-order random functions, and stochastic memoization.

Cite as

Sam Staton. Some Formal Structures in Probability (Invited Talk). In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 4:1-4:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{staton:LIPIcs.FSCD.2021.4,
  author =	{Staton, Sam},
  title =	{{Some Formal Structures in Probability}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{4:1--4:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.4},
  URN =		{urn:nbn:de:0030-drops-142421},
  doi =		{10.4230/LIPIcs.FSCD.2021.4},
  annote =	{Keywords: Probabilistic programming}
}
Document
The Expressive Power of One Variable Used Once: The Chomsky Hierarchy and First-Order Monadic Constructor Rewriting

Authors: Jakob Grue Simonsen

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
We study the implicit computational complexity of constructor term rewriting systems where every function and constructor symbol is unary or nullary. Surprisingly, adding simple and natural constraints to rule formation yields classes of systems that accept exactly the four classes of languages in the Chomsky hierarchy.

Cite as

Jakob Grue Simonsen. The Expressive Power of One Variable Used Once: The Chomsky Hierarchy and First-Order Monadic Constructor Rewriting. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{simonsen:LIPIcs.FSCD.2021.5,
  author =	{Simonsen, Jakob Grue},
  title =	{{The Expressive Power of One Variable Used Once: The Chomsky Hierarchy and First-Order Monadic Constructor Rewriting}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.5},
  URN =		{urn:nbn:de:0030-drops-142439},
  doi =		{10.4230/LIPIcs.FSCD.2021.5},
  annote =	{Keywords: Constructor term rewriting, Chomsky Hierarchy, Implicit Complexity}
}
  • Refine by Author
  • 12 Kobayashi, Naoki
  • 5 Asada, Kazuyuki
  • 5 Tsukada, Takeshi
  • 2 Asai, Kenichi
  • 2 Das, Anupam
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Equational logic and rewriting
  • 8 Theory of computation → Type theory
  • 6 Theory of computation → Proof theory
  • 5 Theory of computation → Lambda calculus
  • 4 Theory of computation → Denotational semantics
  • Show More...

  • Refine by Keyword
  • 5 intersection types
  • 3 linear logic
  • 2 Higher-order model checking
  • 2 Kruskal's tree theorem
  • 2 Lambda calculus
  • Show More...

  • Refine by Type
  • 50 document
  • 1 volume

  • Refine by Publication Year
  • 37 2021
  • 6 2024
  • 3 2020
  • 2 2017
  • 1 2013
  • Show More...