2 Search Results for "Kovács, Benjamin"


Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
Utilizing Constraint Optimization for Industrial Machine Workload Balancing

Authors: Benjamin Kovács, Pierre Tassel, Wolfgang Kohlenbrein, Philipp Schrott-Kostwein, and Martin Gebser

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
Efficient production scheduling is an important application area of constraint-based optimization techniques. Problem domains like flow- and job-shop scheduling have been extensive study targets, and solving approaches range from complete and local search to machine learning methods. In this paper, we devise and compare constraint-based optimization techniques for scheduling specialized manufacturing processes in the build-to-print business. The goal is to allocate production equipment such that customer orders are completed in time as good as possible, while respecting machine capacities and minimizing extra shifts required to resolve bottlenecks. To this end, we furnish several approaches for scheduling pending production tasks to one or more workdays for performing them. First, we propose a greedy custom algorithm that allows for quickly screening the effects of altering resource demands and availabilities. Moreover, we take advantage of such greedy solutions to parameterize and warm-start the optimization performed by integer linear programming (ILP) and constraint programming (CP) solvers on corresponding problem formulations. Our empirical evaluation is based on production data by Kostwein Holding GmbH, a worldwide supplier in the build-to-print business, and thus demonstrates the industrial applicability of our scheduling methods. We also present a user-friendly web interface for feeding the underlying solvers with customer order and equipment data, graphically displaying computed schedules, and facilitating the investigation of changed resource demands and availabilities, e.g., due to updating orders or including extra shifts.

Cite as

Benjamin Kovács, Pierre Tassel, Wolfgang Kohlenbrein, Philipp Schrott-Kostwein, and Martin Gebser. Utilizing Constraint Optimization for Industrial Machine Workload Balancing. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kovacs_et_al:LIPIcs.CP.2021.36,
  author =	{Kov\'{a}cs, Benjamin and Tassel, Pierre and Kohlenbrein, Wolfgang and Schrott-Kostwein, Philipp and Gebser, Martin},
  title =	{{Utilizing Constraint Optimization for Industrial Machine Workload Balancing}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.36},
  URN =		{urn:nbn:de:0030-drops-153276},
  doi =		{10.4230/LIPIcs.CP.2021.36},
  annote =	{Keywords: application, production planning, production scheduling, linear programming, constraint programming, greedy algorithm, benchmarking}
}
  • Refine by Author
  • 1 Gebser, Martin
  • 1 Kaposi, Ambrus
  • 1 Kohlenbrein, Wolfgang
  • 1 Kovács, Benjamin
  • 1 Schrott-Kostwein, Philipp
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Command and control
  • 1 Theory of computation → Type theory

  • Refine by Keyword
  • 1 Type theory
  • 1 application
  • 1 benchmarking
  • 1 constraint programming
  • 1 greedy algorithm
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2024