14 Search Results for "Král', Daniel"


Volume

LIPIcs, Volume 170

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

MFCS 2020, August 24-28, 2020, Prague, Czech Republic

Editors: Javier Esparza and Daniel Král'

Document
Wayfinding Stages: The Role of Familiarity, Gaze Events, and Visual Attention

Authors: Negar Alinaghi and Ioannis Giannopoulos

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Understanding the cognitive processes involved in wayfinding is crucial for both theoretical advances and practical applications in navigation systems development. This study explores how gaze behavior and visual attention contribute to our understanding of cognitive states during wayfinding. Based on the model proposed by Downs and Stea, which segments wayfinding into four distinct stages: self-localization, route planning, monitoring, and goal recognition, we conducted an outdoor wayfinding experiment with 56 participants. Given the significant role of spatial familiarity in wayfinding behavior, each participant navigated six different routes in both familiar and unfamiliar environments, with their eye movements being recorded. We provide a detailed examination of participants' gaze behavior and the actual objects of focus. Our findings reveal distinct gaze behavior patterns and visual attention, differentiating wayfinding stages while emphasizing the impact of spatial familiarity. This examination of visual engagement during wayfinding explains adaptive cognitive processes, demonstrating how familiarity influences navigation strategies. The results enhance our theoretical understanding of wayfinding and offer practical insights for developing navigation aids capable of predicting different wayfinding stages.

Cite as

Negar Alinaghi and Ioannis Giannopoulos. Wayfinding Stages: The Role of Familiarity, Gaze Events, and Visual Attention. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 1:1-1:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alinaghi_et_al:LIPIcs.COSIT.2024.1,
  author =	{Alinaghi, Negar and Giannopoulos, Ioannis},
  title =	{{Wayfinding Stages: The Role of Familiarity, Gaze Events, and Visual Attention}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{1:1--1:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.1},
  URN =		{urn:nbn:de:0030-drops-208161},
  doi =		{10.4230/LIPIcs.COSIT.2024.1},
  annote =	{Keywords: Eye-tracking, Wayfinding, Spatial Familiarity, Visual Attention, Gaze Behavior}
}
Document
Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture

Authors: Jordi Weggemans, Marten Folkertsma, and Chris Cade

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
We study "Merlinized" versions of the recently defined Guided Local Hamiltonian problem, which we call "Guidable Local Hamiltonian" problems. Unlike their guided counterparts, these problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists. We consider in particular two classes of guiding states: those that can be prepared efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically evaluatable, for which it is possible to efficiently compute expectation values of local observables classically. We show that guidable local Hamiltonian problems for both classes of guiding states are QCMA-complete in the inverse-polynomial precision setting, but lie within NP (or NqP) in the constant precision regime when the guiding state is classically evaluatable. Our completeness results show that, from a complexity-theoretic perspective, classical Ansätze selected by classical heuristics are just as powerful as quantum Ansätze prepared by quantum heuristics, as long as one has access to quantum phase estimation. In relation to the quantum PCP conjecture, we (i) define a complexity class capturing quantum-classical probabilistically checkable proof systems and show that it is contained in BQP^NP[1] for constant proof queries; (ii) give a no-go result on "dequantizing" the known quantum reduction which maps a QPCP-verification circuit to a local Hamiltonian with constant promise gap; (iii) give several no-go results for the existence of quantum gap amplification procedures that preserve certain ground state properties; and (iv) propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results can be directly modified to obtain similar results for the class MA.

Cite as

Jordi Weggemans, Marten Folkertsma, and Chris Cade. Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{weggemans_et_al:LIPIcs.TQC.2024.10,
  author =	{Weggemans, Jordi and Folkertsma, Marten and Cade, Chris},
  title =	{{Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.10},
  URN =		{urn:nbn:de:0030-drops-206804},
  doi =		{10.4230/LIPIcs.TQC.2024.10},
  annote =	{Keywords: Quantum complexity theory, local Hamiltonian problem, quantum state ansatzes, QCMA, quantum PCP conjecture}
}
Document
Twin-Width of Graphs on Surfaces

Authors: Daniel Kráľ, Kristýna Pekárková, and Kenny Štorgel

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Twin-width is a width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS'20, JACM'22], which has many structural and algorithmic applications. Hliněný and Jedelský [ICALP'23] showed that every planar graph has twin-width at most 8. We prove that the twin-width of every graph embeddable in a surface of Euler genus g is at most 18√{47g} + O(1), which is asymptotically best possible as it asymptotically differs from the lower bound by a constant multiplicative factor. Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger version of the Product Structure Theorem for graphs of Euler genus g that asserts that every such graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all bags of size at most eight with a single exceptional bag of size max{6, 32g-37}.

Cite as

Daniel Kráľ, Kristýna Pekárková, and Kenny Štorgel. Twin-Width of Graphs on Surfaces. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kral_et_al:LIPIcs.MFCS.2024.66,
  author =	{Kr\'{a}\v{l}, Daniel and Pek\'{a}rkov\'{a}, Krist\'{y}na and \v{S}torgel, Kenny},
  title =	{{Twin-Width of Graphs on Surfaces}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{66:1--66:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.66},
  URN =		{urn:nbn:de:0030-drops-206226},
  doi =		{10.4230/LIPIcs.MFCS.2024.66},
  annote =	{Keywords: twin-width, graphs on surfaces, fixed parameter tractability}
}
Document
Linear-Size Boolean Circuits for Multiselection

Authors: Justin Holmgren and Ron Rothblum

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the circuit complexity of the multiselection problem: given an input string x ∈ {0,1}ⁿ along with indices i_1,… ,i_q ∈ [n], output (x_{i_1},… ,x_{i_q}). A trivial lower bound for the circuit size is the input length n + q⋅log(n), but the straightforward construction has size Θ(q⋅n). Our main result is an O(n+q⋅log³(n))-size and O(log(n+q))-depth circuit for multiselection. In particular, for any q ≤ n/log³(n) the circuit has linear size and logarithmic depth. Prior to our work no linear-size circuit for multiselection was known for any q = ω(1) and regardless of depth.

Cite as

Justin Holmgren and Ron Rothblum. Linear-Size Boolean Circuits for Multiselection. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{holmgren_et_al:LIPIcs.CCC.2024.11,
  author =	{Holmgren, Justin and Rothblum, Ron},
  title =	{{Linear-Size Boolean Circuits for Multiselection}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.11},
  URN =		{urn:nbn:de:0030-drops-204070},
  doi =		{10.4230/LIPIcs.CCC.2024.11},
  annote =	{Keywords: Private Information Retrieval, Batch Selection, Boolean Circuits}
}
Document
Track A: Algorithms, Complexity and Games
Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Authors: Andreas Björklund, Petteri Kaski, and Jesper Nederlof

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to exist, such as for odd-degree graphs. We identify a graph class - the bipartite Pfaffian graphs of minimum degree three - where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found efficiently. We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Waterloo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs where the lollipop method takes exponential time. Beyond the reach of the lollipop method, we address a slightly more general graph class and present two algorithms, one running in linear-time and one operating in logarithmic space, that take as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G. We also present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet in general planar graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.

Cite as

Andreas Björklund, Petteri Kaski, and Jesper Nederlof. Another Hamiltonian Cycle in Bipartite Pfaffian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 26:1-26:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2024.26,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Nederlof, Jesper},
  title =	{{Another Hamiltonian Cycle in Bipartite Pfaffian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{26:1--26:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.26},
  URN =		{urn:nbn:de:0030-drops-201692},
  doi =		{10.4230/LIPIcs.ICALP.2024.26},
  annote =	{Keywords: Another Hamiltonian cycle, Pfaffian graph, planar graph, Thomason’s lollipop method}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Function Spaces for Orbit-Finite Sets

Authors: Mikołaj Bojańczyk, Lê Thành Dũng (Tito) Nguyễn, and Rafał Stefański

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function spaces, i.e. if X and Y are orbit-finite sets, then the space of finitely supported functions from X to Y is not orbit-finite. We propose a solution to this problem inspired by linear logic.

Cite as

Mikołaj Bojańczyk, Lê Thành Dũng (Tito) Nguyễn, and Rafał Stefański. Function Spaces for Orbit-Finite Sets. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 130:1-130:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.ICALP.2024.130,
  author =	{Boja\'{n}czyk, Miko{\l}aj and Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and Stefa\'{n}ski, Rafa{\l}},
  title =	{{Function Spaces for Orbit-Finite Sets}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{130:1--130:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.130},
  URN =		{urn:nbn:de:0030-drops-202730},
  doi =		{10.4230/LIPIcs.ICALP.2024.130},
  annote =	{Keywords: Orbit-finite sets, automata, linear types, game semantics}
}
Document
Track A: Algorithms, Complexity and Games
Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming

Authors: Marcin Briański, Martin Koutecký, Daniel Král', Kristýna Pekárková, and Felix Schröder

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to an equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the 𝓁₁-norm of the Graver basis is bounded by a function of the maximum 𝓁₁-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such an equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the 𝓁₁-norm of the Graver basis of the constraint matrix, when parameterized by the 𝓁₁-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix equivalent to the constraint matrix.

Cite as

Marcin Briański, Martin Koutecký, Daniel Král', Kristýna Pekárková, and Felix Schröder. Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{brianski_et_al:LIPIcs.ICALP.2022.29,
  author =	{Bria\'{n}ski, Marcin and Kouteck\'{y}, Martin and Kr\'{a}l', Daniel and Pek\'{a}rkov\'{a}, Krist\'{y}na and Schr\"{o}der, Felix},
  title =	{{Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.29},
  URN =		{urn:nbn:de:0030-drops-163702},
  doi =		{10.4230/LIPIcs.ICALP.2022.29},
  annote =	{Keywords: Integer programming, width parameters, matroids, Graver basis, tree-depth, fixed parameter tractability}
}
Document
Sparsity in Algorithms, Combinatorics and Logic (Dagstuhl Seminar 21391)

Authors: Daniel Král’, Michał Pilipczuk, Sebastian Siebertz, and Blair D. Sullivan

Published in: Dagstuhl Reports, Volume 11, Issue 8 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21391 "Sparsity in Algorithms, Combinatorics and Logic". The seminar took place in a hybrid format from September 26 - October 1, 2021 and brought together 61 researchers. This report includes a discussion of the motivation of the seminar, presentation of the overall organization, abstracts of talks, and a report from each of the working groups.

Cite as

Daniel Král’, Michał Pilipczuk, Sebastian Siebertz, and Blair D. Sullivan. Sparsity in Algorithms, Combinatorics and Logic (Dagstuhl Seminar 21391). In Dagstuhl Reports, Volume 11, Issue 8, pp. 115-128, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kral'_et_al:DagRep.11.8.115,
  author =	{Kr\'{a}l’, Daniel and Pilipczuk, Micha{\l} and Siebertz, Sebastian and Sullivan, Blair D.},
  title =	{{Sparsity in Algorithms, Combinatorics and Logic (Dagstuhl Seminar 21391)}},
  pages =	{115--128},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{11},
  number =	{8},
  editor =	{Kr\'{a}l’, Daniel and Pilipczuk, Micha{\l} and Siebertz, Sebastian and Sullivan, Blair D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.8.115},
  URN =		{urn:nbn:de:0030-drops-157718},
  doi =		{10.4230/DagRep.11.8.115},
  annote =	{Keywords: Algorithm design, Parameterised complexity, Sparse graphs, Graph decompositions, Model theory}
}
Document
Complete Volume
LIPIcs, Volume 170, MFCS 2020, Complete Volume

Authors: Javier Esparza and Daniel Král'

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
LIPIcs, Volume 170, MFCS 2020, Complete Volume

Cite as

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 1-1216, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{esparza_et_al:LIPIcs.MFCS.2020,
  title =	{{LIPIcs, Volume 170, MFCS 2020, Complete Volume}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{1--1216},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020},
  URN =		{urn:nbn:de:0030-drops-126703},
  doi =		{10.4230/LIPIcs.MFCS.2020},
  annote =	{Keywords: LIPIcs, Volume 170, MFCS 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Javier Esparza and Daniel Král'

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{esparza_et_al:LIPIcs.MFCS.2020.0,
  author =	{Esparza, Javier and Kr\'{a}l', Daniel},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.0},
  URN =		{urn:nbn:de:0030-drops-126714},
  doi =		{10.4230/LIPIcs.MFCS.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Track A: Algorithms, Complexity and Games
Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming

Authors: Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král', and Kristýna Pekárková

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with tree-depth d and largest entry Δ are solvable in time g(d,Δ) poly(n) for some function g, i.e., fixed parameter tractable when parameterized by tree-depth d and Δ. However, the tree-depth of a constraint matrix depends on the positions of its non-zero entries and thus does not reflect its geometric structure. In particular, tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth. We prove that the branch-depth of the matroid defined by the columns of the constraint matrix is equal to the minimum tree-depth of a row-equivalent matrix. We also design a fixed parameter algorithm parameterized by an integer d and the entry complexity of an input matrix that either outputs a matrix with the smallest dual tree-depth that is row-equivalent to the input matrix or outputs that there is no matrix with dual tree-depth at most d that is row-equivalent to the input matrix. Finally, we use these results to obtain a fixed parameter algorithm for integer programming parameterized by the branch-depth of the input constraint matrix and the entry complexity. The parameterization by branch-depth cannot be replaced by the more permissive notion of branch-width.

Cite as

Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král', and Kristýna Pekárková. Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ICALP.2020.26,
  author =	{Chan, Timothy F. N. and Cooper, Jacob W. and Kouteck\'{y}, Martin and Kr\'{a}l', Daniel and Pek\'{a}rkov\'{a}, Krist\'{y}na},
  title =	{{Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.26},
  URN =		{urn:nbn:de:0030-drops-124339},
  doi =		{10.4230/LIPIcs.ICALP.2020.26},
  annote =	{Keywords: Matroid algorithms, width parameters, integer programming, fixed parameter tractability, branch-width, branch-depth}
}
Document
Recovering Sparse Graphs

Authors: Jakub Gajarský and Daniel Král'

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We construct a fixed parameter algorithm parameterized by d and k that takes as an input a graph G' obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets of the vertex set of G and outputs a graph H such that G and H agree on all but f(d,k) vertices. Our work is motivated by the first order model checking in graph classes that are first order interpretable in classes of sparse graphs. We derive as a corollary that if G is a graph class with bounded expansion, then the first order model checking is fixed parameter tractable in the class of all graphs that can obtained from a graph G in G by complementing on at most k arbitrary subsets of the vertex set of G; this implies an earlier result that the first order model checking is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded maximum degree.

Cite as

Jakub Gajarský and Daniel Král'. Recovering Sparse Graphs. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.MFCS.2018.29,
  author =	{Gajarsk\'{y}, Jakub and Kr\'{a}l', Daniel},
  title =	{{Recovering Sparse Graphs}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.29},
  URN =		{urn:nbn:de:0030-drops-96111},
  doi =		{10.4230/LIPIcs.MFCS.2018.29},
  annote =	{Keywords: model checking, degenerate graphs, interpretations, bounded expansion}
}
Document
Graphic TSP in Cubic Graphs

Authors: Zdenek Dvorák, Daniel Král, and Bojan Mohar

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)


Abstract
We present a polynomial-time 9/7-approximation algorithm for the graphic TSP for cubic graphs, which improves the previously best approximation factor of 1.3 for 2-connected cubic graphs and drops the requirement of 2-connectivity at the same time. To design our algorithm, we prove that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at most 9n/7-1, and that such a walk can be found in polynomial time.

Cite as

Zdenek Dvorák, Daniel Král, and Bojan Mohar. Graphic TSP in Cubic Graphs. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 27:1-27:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.STACS.2017.27,
  author =	{Dvor\'{a}k, Zdenek and Kr\'{a}l, Daniel and Mohar, Bojan},
  title =	{{Graphic TSP in Cubic Graphs}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{27:1--27:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.27},
  URN =		{urn:nbn:de:0030-drops-70068},
  doi =		{10.4230/LIPIcs.STACS.2017.27},
  annote =	{Keywords: Graphic TSP, approximation algorithms, cubic graphs}
}
  • Refine by Author
  • 5 Král', Daniel
  • 3 Pekárková, Kristýna
  • 2 Esparza, Javier
  • 2 Koutecký, Martin
  • 1 Alinaghi, Negar
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Combinatorial algorithms
  • 2 Mathematics of computing → Combinatorial optimization
  • 2 Mathematics of computing → Graph theory
  • 2 Mathematics of computing → Matroids and greedoids
  • 2 Theory of computation
  • Show More...

  • Refine by Keyword
  • 3 fixed parameter tractability
  • 2 width parameters
  • 1 Algorithm design
  • 1 Another Hamiltonian cycle
  • 1 Batch Selection
  • Show More...

  • Refine by Type
  • 13 document
  • 1 volume

  • Refine by Publication Year
  • 6 2024
  • 4 2020
  • 2 2022
  • 1 2017
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail