28 Search Results for "Lasota, Sławomir"


Volume

LIPIcs, Volume 243

33rd International Conference on Concurrency Theory (CONCUR 2022)

CONCUR 2022, September 12-16, 2022, Warsaw, Poland

Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl

Document
Optimizing a Non-Deterministic Abstract Machine with Environments

Authors: Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Non-deterministic abstract machine (NDAM) is a recent implementation model for programming languages where one must choose among several redexes at each reduction step, like process calculi. These machines can be derived from a zipper semantics, a mix between structural operational semantics and context-based reduction semantics. Such a machine has been generated also for the λ-calculus without a fixed reduction strategy, i.e., with the full non-deterministic β-reduction. In that machine, substitution is an external operation that replaces all the occurrences of a variable at once. Implementing substitution with environments is more low-level and more efficient as variables are replaced only when needed. In this paper, we define a NDAM with environments for the λ-calculus without a fixed reduction strategy. We also introduce other optimizations, including a form of refocusing, and we show that we can restrict our optimized NDAM to recover some of the usual λ-calculus machines, e.g., the Krivine Abstract Machine. Most of the improvements we propose in this work could be applied to other NDAMs as well.

Cite as

Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt. Optimizing a Non-Deterministic Abstract Machine with Environments. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biernacka_et_al:LIPIcs.FSCD.2024.11,
  author =	{Biernacka, Ma{\l}gorzata and Biernacki, Dariusz and Lenglet, Sergue\"{i} and Schmitt, Alan},
  title =	{{Optimizing a Non-Deterministic Abstract Machine with Environments}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.11},
  URN =		{urn:nbn:de:0030-drops-203409},
  doi =		{10.4230/LIPIcs.FSCD.2024.11},
  annote =	{Keywords: Abstract machine, Explicit substitutions, Refocusing}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Function Spaces for Orbit-Finite Sets

Authors: Mikołaj Bojańczyk, Lê Thành Dũng (Tito) Nguyễn, and Rafał Stefański

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function spaces, i.e. if X and Y are orbit-finite sets, then the space of finitely supported functions from X to Y is not orbit-finite. We propose a solution to this problem inspired by linear logic.

Cite as

Mikołaj Bojańczyk, Lê Thành Dũng (Tito) Nguyễn, and Rafał Stefański. Function Spaces for Orbit-Finite Sets. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 130:1-130:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.ICALP.2024.130,
  author =	{Boja\'{n}czyk, Miko{\l}aj and Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and Stefa\'{n}ski, Rafa{\l}},
  title =	{{Function Spaces for Orbit-Finite Sets}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{130:1--130:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.130},
  URN =		{urn:nbn:de:0030-drops-202730},
  doi =		{10.4230/LIPIcs.ICALP.2024.130},
  annote =	{Keywords: Orbit-finite sets, automata, linear types, game semantics}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Algorithm for Reachability in d-VASS

Authors: Yuxi Fu, Qizhe Yang, and Yangluo Zheng

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An 𝖥_{d} upper bound for the reachability problem in vector addition systems with states (VASS) in fixed dimension is given, where 𝖥_d is the d-th level of the Grzegorczyk hierarchy of complexity classes. The new algorithm combines the idea of the linear path scheme characterization of the reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju and Lambert. The result improves the 𝖥_{d + 4} upper bound due to Leroux and Schmitz (LICS 2019).

Cite as

Yuxi Fu, Qizhe Yang, and Yangluo Zheng. Improved Algorithm for Reachability in d-VASS. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 136:1-136:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2024.136,
  author =	{Fu, Yuxi and Yang, Qizhe and Zheng, Yangluo},
  title =	{{Improved Algorithm for Reachability in d-VASS}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{136:1--136:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.136},
  URN =		{urn:nbn:de:0030-drops-202799},
  doi =		{10.4230/LIPIcs.ICALP.2024.136},
  annote =	{Keywords: Petri net, vector addition system, reachability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flattability of Priority Vector Addition Systems

Authors: Roland Guttenberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Vector addition systems (VAS), also known as Petri nets, are a popular model of concurrent systems. Many problems from many areas reduce to the reachability problem for VAS, which consists of deciding whether a target configuration of a VAS is reachable from a given initial configuration. One of the main approaches to solve the problem on practical instances is called flattening, intuitively removing nested loops. This technique is known to terminate for semilinear VAS due to [Jérôme Leroux, 2013]. In this paper, we prove that also for VAS with nested zero tests, called Priority VAS, flattening does in fact terminate for all semilinear reachability relations. Furthermore, we prove that Priority VAS admit semilinear inductive invariants. Both of these results are obtained by defining a well-quasi-order on runs of Priority VAS which has good pumping properties.

Cite as

Roland Guttenberg. Flattability of Priority Vector Addition Systems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 141:1-141:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guttenberg:LIPIcs.ICALP.2024.141,
  author =	{Guttenberg, Roland},
  title =	{{Flattability of Priority Vector Addition Systems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{141:1--141:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.141},
  URN =		{urn:nbn:de:0030-drops-202848},
  doi =		{10.4230/LIPIcs.ICALP.2024.141},
  annote =	{Keywords: Priority Vector Addition Systems, Semilinear, Inductive Invariants, Geometry, Flattability, Almost Semilinear, Transformer Relation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Domain Reasoning in TopKAT

Authors: Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
TopKAT is the algebraic theory of Kleene algebra with tests (KAT) extended with a top element. Compared to KAT, one pleasant feature of TopKAT is that, in relational models, the top element allows us to express the domain and codomain of a relation. This enables several applications in program logics, such as proving under-approximate specifications or reachability properties of imperative programs. However, while TopKAT inherits many pleasant features of KATs, such as having a decidable equational theory, it is incomplete with respect to relational models. In other words, there are properties that hold true of all relational TopKATs but cannot be proved with the axioms of TopKAT. This issue is potentially worrisome for program-logic applications, in which relational models play a key role. In this paper, we further investigate the completeness properties of TopKAT with respect to relational models. We show that TopKAT is complete with respect to (co)domain comparison of KAT terms, but incomplete when comparing the (co)domain of arbitrary TopKAT terms. Since the encoding of under-approximate specifications in TopKAT hinges on this type of formula, the aforementioned incompleteness results have a limited impact when using TopKAT to reason about such specifications.

Cite as

Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. Domain Reasoning in TopKAT. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 157:1-157:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.ICALP.2024.157,
  author =	{Zhang, Cheng and de Amorim, Arthur Azevedo and Gaboardi, Marco},
  title =	{{Domain Reasoning in TopKAT}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{157:1--157:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.157},
  URN =		{urn:nbn:de:0030-drops-203003},
  doi =		{10.4230/LIPIcs.ICALP.2024.157},
  annote =	{Keywords: Kleene algebra, Kleene Algebra With Tests, Kleene Algebra With Domain, Kleene Algebra With Top and Tests, Completeness, Decidability}
}
Document
New Lower Bounds for Reachability in Vector Addition Systems

Authors: Wojciech Czerwiński, Ismaël Jecker, Sławomir Lasota, Jérôme Leroux, and Łukasz Orlikowski

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We investigate the dimension-parametric complexity of the reachability problem in vector addition systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to now, the problem is known to be F_d-hard for VASS of dimension 3d+2 (the complexity class F_d corresponds to the kth level of the fast-growing hierarchy), and no essentially better bound is known for pushdown VASS. We provide a new construction that improves the lower bound for VASS: F_d-hardness in dimension 2d+3. Furthermore, building on our new insights we show a new lower bound for pushdown VASS: F_d-hardness in dimension d/2 + 6. This dimension-parametric lower bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown) complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is Ackermann-complete).

Cite as

Wojciech Czerwiński, Ismaël Jecker, Sławomir Lasota, Jérôme Leroux, and Łukasz Orlikowski. New Lower Bounds for Reachability in Vector Addition Systems. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.FSTTCS.2023.35,
  author =	{Czerwi\'{n}ski, Wojciech and Jecker, Isma\"{e}l and Lasota, S{\l}awomir and Leroux, J\'{e}r\^{o}me and Orlikowski, {\L}ukasz},
  title =	{{New Lower Bounds for Reachability in Vector Addition Systems}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.35},
  URN =		{urn:nbn:de:0030-drops-194088},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.35},
  annote =	{Keywords: vector addition systems, reachability problem, pushdown vector addition system, lower bounds}
}
Document
Complete Volume
LIPIcs, Volume 243, CONCUR 2022, Complete Volume

Authors: Bartek Klin, Sławomir Lasota, and Anca Muscholl

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
LIPIcs, Volume 243, CONCUR 2022, Complete Volume

Cite as

33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 1-712, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{klin_et_al:LIPIcs.CONCUR.2022,
  title =	{{LIPIcs, Volume 243, CONCUR 2022, Complete Volume}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{1--712},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022},
  URN =		{urn:nbn:de:0030-drops-170623},
  doi =		{10.4230/LIPIcs.CONCUR.2022},
  annote =	{Keywords: LIPIcs, Volume 243, CONCUR 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Bartek Klin, Sławomir Lasota, and Anca Muscholl

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{klin_et_al:LIPIcs.CONCUR.2022.0,
  author =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{0:i--0:x},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.0},
  URN =		{urn:nbn:de:0030-drops-170631},
  doi =		{10.4230/LIPIcs.CONCUR.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Paper
CONCUR Test-Of-Time Award 2022 (Invited Paper)

Authors: Ilaria Castellani, Paul Gastin, Orna Kupferman, Mickael Randour, and Davide Sangiorgi

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
This short article recaps the purpose of the CONCUR Test-of-Time Award and presents the four papers that received the Award in 2022.

Cite as

Ilaria Castellani, Paul Gastin, Orna Kupferman, Mickael Randour, and Davide Sangiorgi. CONCUR Test-Of-Time Award 2022 (Invited Paper). In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 1:1-1:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{castellani_et_al:LIPIcs.CONCUR.2022.1,
  author =	{Castellani, Ilaria and Gastin, Paul and Kupferman, Orna and Randour, Mickael and Sangiorgi, Davide},
  title =	{{CONCUR Test-Of-Time Award 2022}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{1:1--1:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.1},
  URN =		{urn:nbn:de:0030-drops-170644},
  doi =		{10.4230/LIPIcs.CONCUR.2022.1},
  annote =	{Keywords: CONCUR Test-of-Time Award}
}
Document
Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem

Authors: Sławomir Lasota

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
Petri nets, equivalently presentable as vector addition systems with states, are an established model of concurrency with widespread applications. The reachability problem, where we ask whether from a given initial configuration there exists a sequence of valid execution steps reaching a given final configuration, is the central algorithmic problem for this model. The complexity of the problem has remained, until recently, one of the hardest open questions in verification of concurrent systems. A first upper bound has been provided only in 2015 by Leroux and Schmitz, then refined by the same authors to non-primitive recursive Ackermannian upper bound in 2019. The exponential space lower bound, shown by Lipton already in 1976, remained the only known for over 40 years until a breakthrough non-elementary lower bound by Czerwiński, Lasota, Lazic, Leroux and Mazowiecki in 2019. Finally, a matching Ackermannian lower bound announced this year by Czerwiński and Orlikowski, and independently by Leroux, established the complexity of the problem. Our primary contribution is an improvement of the former construction, making it conceptually simpler and more direct. On the way we improve the lower bound for vector addition systems with states in fixed dimension (or, equivalently, Petri nets with fixed number of places): while Czerwiński and Orlikowski prove F_k-hardness (hardness for kth level in Grzegorczyk Hierarchy) in dimension 6k, our simplified construction yields F_k-hardness already in dimension 3k+2.

Cite as

Sławomir Lasota. Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lasota:LIPIcs.STACS.2022.46,
  author =	{Lasota, S{\l}awomir},
  title =	{{Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.46},
  URN =		{urn:nbn:de:0030-drops-158561},
  doi =		{10.4230/LIPIcs.STACS.2022.46},
  annote =	{Keywords: Petri nets, reachability problem, vector addition systems}
}
Document
Parikh Images of Register Automata

Authors: Sławomir Lasota and Mohnish Pattathurajan

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
As it has been recently shown, Parikh images of languages of nondeterministic one-register automata are rational (but not semilinear in general), but it is still open if the property extends to all register automata. We identify a subclass of nondeterministic register automata, called hierarchical register automata (HRA), with the following two properties: every rational language is recognised by a HRA; and Parikh image of the language of every HRA is rational. In consequence, these two properties make HRA an automata-theoretic characterisation of languages of nondeterministic register automata with rational Parikh images.

Cite as

Sławomir Lasota and Mohnish Pattathurajan. Parikh Images of Register Automata. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lasota_et_al:LIPIcs.FSTTCS.2021.50,
  author =	{Lasota, S{\l}awomir and Pattathurajan, Mohnish},
  title =	{{Parikh Images of Register Automata}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.50},
  URN =		{urn:nbn:de:0030-drops-155613},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.50},
  annote =	{Keywords: Sets with atoms, register automata, Parikh images, rational sets, hierarchical register automata}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Lower Bounds for Reachability in Vector Addition Systems

Authors: Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We investigate computational complexity of the reachability problem for vector addition systems (or, equivalently, Petri nets), the central algorithmic problem in verification of concurrent systems. Concerning its complexity, after 40 years of stagnation, a non-elementary lower bound has been shown recently: the problem needs a tower of exponentials of time or space, where the height of tower is linear in the input size. We improve on this lower bound, by increasing the height of tower from linear to exponential. As a side-effect, we obtain better lower bounds for vector addition systems of fixed dimension.

Cite as

Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski. Improved Lower Bounds for Reachability in Vector Addition Systems. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 128:1-128:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.ICALP.2021.128,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Orlikowski, {\L}ukasz},
  title =	{{Improved Lower Bounds for Reachability in Vector Addition Systems}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{128:1--128:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.128},
  URN =		{urn:nbn:de:0030-drops-141973},
  doi =		{10.4230/LIPIcs.ICALP.2021.128},
  annote =	{Keywords: Petri nets, vector addition systems, reachability problem}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
New Techniques for Universality in Unambiguous Register Automata

Authors: Wojciech Czerwiński, Antoine Mottet, and Karin Quaas

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Register automata are finite automata equipped with a finite set of registers ranging over the domain of some relational structure like (ℕ; =) or (ℚ; <). Register automata process words over the domain, and along a run of the automaton, the registers can store data from the input word for later comparisons. It is long known that the universality problem, i.e., the problem to decide whether a given register automaton accepts all words over the domain, is undecidable. Recently, we proved the problem to be decidable in 2-ExpSpace if the register automaton under study is over (ℕ; =) and unambiguous, i.e., every input word has at most one accepting run; this result was shortly after improved to 2-ExpTime by Barloy and Clemente. In this paper, we go one step further and prove that the problem is in ExpSpace, and in PSpace if the number of registers is fixed. Our proof is based on new techniques that additionally allow us to show that the problem is in PSpace for single-register automata over (ℚ; <). As a third technical contribution we prove that the problem is decidable (in ExpSpace) for a more expressive model of unambiguous register automata, where the registers can take values nondeterministically, if defined over (ℕ; =) and only one register is used.

Cite as

Wojciech Czerwiński, Antoine Mottet, and Karin Quaas. New Techniques for Universality in Unambiguous Register Automata. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 129:1-129:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.ICALP.2021.129,
  author =	{Czerwi\'{n}ski, Wojciech and Mottet, Antoine and Quaas, Karin},
  title =	{{New Techniques for Universality in Unambiguous Register Automata}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{129:1--129:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.129},
  URN =		{urn:nbn:de:0030-drops-141983},
  doi =		{10.4230/LIPIcs.ICALP.2021.129},
  annote =	{Keywords: Register Automata, Data Languages, Unambiguity, Unambiguous, Universality, Containment, Language Inclusion, Equivalence}
}
Document
Determinisability of One-Clock Timed Automata

Authors: Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The deterministic membership problem for timed automata asks whether the timed language recognised by a nondeterministic timed automaton can be recognised by a deterministic timed automaton. We show that the problem is decidable when the input automaton is a one-clock nondeterministic timed automaton without epsilon transitions and the number of clocks of the deterministic timed automaton is fixed. We show that the problem in all the other cases is undecidable, i.e., when either 1) the input nondeterministic timed automaton has two clocks or more, or 2) it uses epsilon transitions, or 3) the number of clocks of the output deterministic automaton is not fixed.

Cite as

Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Determinisability of One-Clock Timed Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.CONCUR.2020.42,
  author =	{Clemente, Lorenzo and Lasota, S{\l}awomir and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{Determinisability of One-Clock Timed Automata}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.42},
  URN =		{urn:nbn:de:0030-drops-128542},
  doi =		{10.4230/LIPIcs.CONCUR.2020.42},
  annote =	{Keywords: Timed automata, determinisation, deterministic membership problem}
}
  • Refine by Author
  • 10 Lasota, Sławomir
  • 9 Lasota, Slawomir
  • 6 Clemente, Lorenzo
  • 5 Czerwiński, Wojciech
  • 4 Czerwinski, Wojciech
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Concurrency
  • 6 Theory of computation → Logic and verification
  • 5 Theory of computation → Automata over infinite objects
  • 5 Theory of computation → Formal languages and automata theory
  • 4 Theory of computation → Timed and hybrid models
  • Show More...

  • Refine by Keyword
  • 7 Petri nets
  • 6 vector addition systems
  • 4 reachability problem
  • 3 decidability
  • 2 Sets with atoms
  • Show More...

  • Refine by Type
  • 27 document
  • 1 volume

  • Refine by Publication Year
  • 5 2022
  • 5 2024
  • 3 2018
  • 3 2020
  • 3 2021
  • Show More...