20 Search Results for "Limaye, Nutan"


Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
Low-Depth Algebraic Circuit Lower Bounds over Any Field

Authors: Michael A. Forbes

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The recent breakthrough of Limaye, Srinivasan and Tavenas [Limaye et al., 2022] (LST) gave the first super-polynomial lower bounds against low-depth algebraic circuits, for any field of zero (or sufficiently large) characteristic. It was an open question to extend this result to small-characteristic ([Limaye et al., 2022; Govindasamy et al., 2022; Fournier et al., 2023]), which in particular is relevant for an approach to prove superpolynomial AC⁰[p]-Frege lower bounds ([Govindasamy et al., 2022]). In this work, we prove super-polynomial algebraic circuit lower bounds against low-depth algebraic circuits over any field, with the same parameters as LST (or even matching the improved parameters of Bhargav, Dutta, and Saxena [Bhargav et al., 2022]). We give two proofs. The first is logical, showing that even though the proof of LST naively fails in small characteristic, the proof is sufficiently algebraic that generic transfer results imply the result over characteristic zero implies the result over all fields. Motivated by this indirect proof, we then proceed to give a second constructive proof, replacing the field-dependent set-multilinearization result of LST with a set-multilinearization that works over any field, by using the Binet-Minc identity [Minc, 1979].

Cite as

Michael A. Forbes. Low-Depth Algebraic Circuit Lower Bounds over Any Field. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forbes:LIPIcs.CCC.2024.31,
  author =	{Forbes, Michael A.},
  title =	{{Low-Depth Algebraic Circuit Lower Bounds over Any Field}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.31},
  URN =		{urn:nbn:de:0030-drops-204271},
  doi =		{10.4230/LIPIcs.CCC.2024.31},
  annote =	{Keywords: algebraic circuits, lower bounds, low-depth circuits, positive characteristic}
}
Document
Track A: Algorithms, Complexity and Games
NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials

Authors: Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ 𝔽[𝐱] and s ∈ ℕ, ETsparse asks to check if there exist A ∈ GL(|𝐱|, 𝔽) and 𝐛 ∈ 𝔽^|𝐱| such that f(A𝐱 + 𝐛) is s-sparse. We show that ETsparse is NP-hard over any field 𝔽, if f is given in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show that approximating the smallest s₀ such that a given s-sparse polynomial f is in the orbit of some s₀-sparse polynomial to within a factor of s^{1/3 - ε} is NP-hard for any ε > 0; observe that s-factor approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial of f. These results are obtained via direct reductions from the 3-SAT problem.

Cite as

Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.ICALP.2024.16,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan and Sinha, Pulkit},
  title =	{{NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.16},
  URN =		{urn:nbn:de:0030-drops-201598},
  doi =		{10.4230/LIPIcs.ICALP.2024.16},
  annote =	{Keywords: Equivalence testing, MCSP, sparse polynomials, 3SAT}
}
Document
Track A: Algorithms, Complexity and Games
Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters

Authors: Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to determine if there exists a homomorphism from an instance graph G to H. We study the complexity of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a linear ordering v_1,…,v_n of V(G) such that, for each i ∈ {1,…,n-1}, the number of edges with one endpoint in {v_1,…,v_i} and the other in {v_{i+1},…,v_n} is at most k. We aim, for each H, for algorithms for Hom(H) running in time c_H^k n^𝒪(1) and matching lower bounds that exclude c_H^{k⋅o(1)} n^𝒪(1) or c_H^{k(1-Ω(1))} n^𝒪(1) time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main contribution is strong evidence of a close connection between c_H and mimsup(H): - an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most mimsup(H)^k, - lower bounds that show that for almost all graphs H indeed we have c_H ≥ mimsup(H), assuming the (Strong) Exponential-Time Hypothesis, and - an algorithm with running time exp(𝒪(mimsup(H)⋅k log k)) n^𝒪(1). In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter tractable, when parameterized by cutwidth of G and mimsup(H). The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching number in the graph obtained by multiplying p copies of H via a certain graph product, where p tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of H. Such parameters play a central role in, among others, algebraic complexity theory and additive combinatorics. Our results tightly link the parameterized complexity of a problem to such an asymptotic matrix parameter for the first time.

Cite as

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski. Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 77:1-77:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{groenland_et_al:LIPIcs.ICALP.2024.77,
  author =	{Groenland, Carla and Mannens, Isja and Nederlof, Jesper and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{77:1--77:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.77},
  URN =		{urn:nbn:de:0030-drops-202208},
  doi =		{10.4230/LIPIcs.ICALP.2024.77},
  annote =	{Keywords: graph homomorphism, cutwidth, asymptotic matrix parameters}
}
Document
Towards Optimal Depth-Reductions for Algebraic Formulas

Authors: Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan, and Sébastien Tavenas

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d = s^o(1)). In particular, for the setting of d = O(log s), along with a result of Raz (STOC 2010, JACM 2013), our result implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting in light of recent algebraic formula lower bounds, which work precisely in this "low-degree" and "low-depth" setting. We also show that these results cannot be improved in the monotone setting, even for commutative formulas.

Cite as

Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan, and Sébastien Tavenas. Towards Optimal Depth-Reductions for Algebraic Formulas. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 28:1-28:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fournier_et_al:LIPIcs.CCC.2023.28,
  author =	{Fournier, Herv\'{e} and Limaye, Nutan and Malod, Guillaume and Srinivasan, Srikanth and Tavenas, S\'{e}bastien},
  title =	{{Towards Optimal Depth-Reductions for Algebraic Formulas}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{28:1--28:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.28},
  URN =		{urn:nbn:de:0030-drops-182986},
  doi =		{10.4230/LIPIcs.CCC.2023.28},
  annote =	{Keywords: Algebraic formulas, depth-reduction}
}
Document
Track A: Algorithms, Complexity and Games
Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

Authors: Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A recent breakthrough work of Limaye, Srinivasan and Tavenas [Nutan Limaye et al., 2021] proved superpolynomial lower bounds for low-depth arithmetic circuits via a "hardness escalation" approach: they proved lower bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits. In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the superpolynomial lower bounds for regular formulas [Neeraj Kayal et al., 2014; Hervé Fournier et al., 2015].

Cite as

Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey. Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.ICALP.2023.12,
  author =	{Amireddy, Prashanth and Garg, Ankit and Kayal, Neeraj and Saha, Chandan and Thankey, Bhargav},
  title =	{{Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.12},
  URN =		{urn:nbn:de:0030-drops-180642},
  doi =		{10.4230/LIPIcs.ICALP.2023.12},
  annote =	{Keywords: arithmetic circuits, low-depth circuits, lower bounds, shifted partials}
}
Document
On the VNP-Hardness of Some Monomial Symmetric Polynomials

Authors: Radu Curticapean, Nutan Limaye, and Srikanth Srinivasan

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
A polynomial P ∈ 𝔽[x_1,…,x_n] is said to be symmetric if it is invariant under any permutation of its input variables. The study of symmetric polynomials is a classical topic in mathematics, specifically in algebraic combinatorics and representation theory. More recently, they have been studied in several works in computer science, especially in algebraic complexity theory. In this paper, we prove the computational hardness of one of the most basic kinds of symmetric polynomials: the monomial symmetric polynomials, which are obtained by summing all distinct permutations of a single monomial. This family of symmetric functions is a natural basis for the space of symmetric polynomials (over any field), and generalizes many well-studied families such as the elementary symmetric polynomials and the power-sum symmetric polynomials. We show that certain families of monomial symmetric polynomials are VNP-complete with respect to oracle reductions. This stands in stark contrast to the case of elementary and power symmetric polynomials, both of which have constant-depth circuits of polynomial size.

Cite as

Radu Curticapean, Nutan Limaye, and Srikanth Srinivasan. On the VNP-Hardness of Some Monomial Symmetric Polynomials. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.FSTTCS.2022.16,
  author =	{Curticapean, Radu and Limaye, Nutan and Srinivasan, Srikanth},
  title =	{{On the VNP-Hardness of Some Monomial Symmetric Polynomials}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.16},
  URN =		{urn:nbn:de:0030-drops-174081},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.16},
  annote =	{Keywords: algebraic complexity, symmetric polynomial, permanent, Sidon set}
}
Document
On the Partial Derivative Method Applied to Lopsided Set-Multilinear Polynomials

Authors: Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We make progress on understanding a lower bound technique that was recently used by the authors to prove the first superpolynomial constant-depth circuit lower bounds against algebraic circuits. More specifically, our previous work applied the well-known partial derivative method in a new setting, that of lopsided set-multilinear polynomials. A set-multilinear polynomial P ∈ 𝔽[X_1,…,X_d] (for disjoint sets of variables X_1,…,X_d) is a linear combination of monomials, each of which contains one variable from X_1,…,X_d. A lopsided space of set-multilinear polynomials is one where the sets X_1,…,X_d are allowed to have different sizes (we use the adjective "lopsided" to stress this feature). By choosing a suitable lopsided space of polynomials, and using a suitable version of the partial-derivative method for proving lower bounds, we were able to prove constant-depth superpolynomial set-multilinear formula lower bounds even for very low-degree polynomials (as long as d is a growing function of the number of variables N). This in turn implied lower bounds against general formulas of constant-depth. A priori, there is nothing stopping these techniques from giving us lower bounds against algebraic formulas of any depth. We investigate the extent to which this lower bound can extend to greater depths. We prove the following results. 1) We observe that our choice of the lopsided space and the kind of partial-derivative method used can be modeled as the choice of a multiset W ⊆ [-1,1] of size d. Our first result completely characterizes, for any product-depth Δ, the best lower bound we can prove for set-multilinear formulas of product-depth Δ in terms of some combinatorial properties of W, that we call the depth-Δ tree bias of W. 2) We show that the maximum depth-3 tree bias, over multisets W of size d, is Θ(d^{1/4}). This shows a stronger formula lower bound of N^{Ω(d^{1/4})} for set-multilinear formulas of product-depth 3, and also puts a non-trivial constraint on the best lower bounds we can hope to prove at this depth in this framework (a priori, we could have hoped to prove a lower bound of N^{Ω(Δ d^{1/Δ})} at product-depth Δ). 3) Finally, we show that for small Δ, our proof technique cannot hope to prove lower bounds of the form N^{Ω(d^{1/poly(Δ)})}. This seems to strongly hint that new ideas will be required to prove lower bounds for formulas of unbounded depth.

Cite as

Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. On the Partial Derivative Method Applied to Lopsided Set-Multilinear Polynomials. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 32:1-32:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{limaye_et_al:LIPIcs.CCC.2022.32,
  author =	{Limaye, Nutan and Srinivasan, Srikanth and Tavenas, S\'{e}bastien},
  title =	{{On the Partial Derivative Method Applied to Lopsided Set-Multilinear Polynomials}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{32:1--32:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.32},
  URN =		{urn:nbn:de:0030-drops-165942},
  doi =		{10.4230/LIPIcs.CCC.2022.32},
  annote =	{Keywords: Partial Derivative Method, Barriers to Lower Bounds}
}
Document
Lower Bounds for Matrix Factorization

Authors: Mrinal Kumar and Ben Lee Volk

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We study the problem of constructing explicit families of matrices which cannot be expressed as a product of a few sparse matrices. In addition to being a natural mathematical question on its own, this problem appears in various incarnations in computer science; the most significant being in the context of lower bounds for algebraic circuits which compute linear transformations, matrix rigidity and data structure lower bounds. We first show, for every constant d, a deterministic construction in time exp(n^(1-Ω(1/d))) of a family {M_n} of n × n matrices which cannot be expressed as a product M_n = A_1 ⋯ A_d where the total sparsity of A_1,…,A_d is less than n^(1+1/(2d)). In other words, any depth-d linear circuit computing the linear transformation M_n⋅ 𝐱 has size at least n^(1+Ω(1/d)). This improves upon the prior best lower bounds for this problem, which are barely super-linear, and were obtained by a long line of research based on the study of super-concentrators (albeit at the cost of a blow up in the time required to construct these matrices). We then outline an approach for proving improved lower bounds through a certain derandomization problem, and use this approach to prove asymptotically optimal quadratic lower bounds for natural special cases, which generalize many of the common matrix decompositions.

Cite as

Mrinal Kumar and Ben Lee Volk. Lower Bounds for Matrix Factorization. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kumar_et_al:LIPIcs.CCC.2020.5,
  author =	{Kumar, Mrinal and Volk, Ben Lee},
  title =	{{Lower Bounds for Matrix Factorization}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.5},
  URN =		{urn:nbn:de:0030-drops-125578},
  doi =		{10.4230/LIPIcs.CCC.2020.5},
  annote =	{Keywords: Algebraic Complexity, Linear Circuits, Matrix Factorization, Lower Bounds}
}
Document
Schur Polynomials Do Not Have Small Formulas If the Determinant Doesn't

Authors: Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She, and Srikanth Srinivasan

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Schur Polynomials are families of symmetric polynomials that have been classically studied in Combinatorics and Algebra alike. They play a central role in the study of Symmetric functions, in Representation theory [Stanley, 1999], in Schubert calculus [Ledoux and Malham, 2010] as well as in Enumerative combinatorics [Gasharov, 1996; Stanley, 1984; Stanley, 1999]. In recent years, they have also shown up in various incarnations in Computer Science, e.g, Quantum computation [Hallgren et al., 2000; Ryan O'Donnell and John Wright, 2015] and Geometric complexity theory [Ikenmeyer and Panova, 2017]. However, unlike some other families of symmetric polynomials like the Elementary Symmetric polynomials, the Power Symmetric polynomials and the Complete Homogeneous Symmetric polynomials, the computational complexity of syntactically computing Schur polynomials has not been studied much. In particular, it is not known whether Schur polynomials can be computed efficiently by algebraic formulas. In this work, we address this question, and show that unless every polynomial with a small algebraic branching program (ABP) has a small algebraic formula, there are Schur polynomials that cannot be computed by algebraic formula of polynomial size. In other words, unless the algebraic complexity class VBP is equal to the complexity class VF, there exist Schur polynomials which do not have polynomial size algebraic formulas. As a consequence of our proof, we also show that computing the determinant of certain generalized Vandermonde matrices is essentially as hard as computing the general symbolic determinant. To the best of our knowledge, these are one of the first hardness results of this kind for families of polynomials which are not multilinear. A key ingredient of our proof is the study of composition of well behaved algebraically independent polynomials with a homogeneous polynomial, and might be of independent interest.

Cite as

Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She, and Srikanth Srinivasan. Schur Polynomials Do Not Have Small Formulas If the Determinant Doesn't. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 14:1-14:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chaugule_et_al:LIPIcs.CCC.2020.14,
  author =	{Chaugule, Prasad and Kumar, Mrinal and Limaye, Nutan and Mohapatra, Chandra Kanta and She, Adrian and Srinivasan, Srikanth},
  title =	{{Schur Polynomials Do Not Have Small Formulas If the Determinant Doesn't}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{14:1--14:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.14},
  URN =		{urn:nbn:de:0030-drops-125660},
  doi =		{10.4230/LIPIcs.CCC.2020.14},
  annote =	{Keywords: Schur polynomial, Jacobian, Algebraic independence, Generalized Vandermonde determinant, Taylor expansion, Formula complexity, Lower bound}
}
Document
On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits

Authors: Suryajith Chillara

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
In this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of r (referred to as multi-r-ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better and better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing a multilinear polynomial on n^O(1) variables and degree d=o(n), must have size at least (n/r^1.1)^Ω(√{d/r}) when r is o(d) and is strictly less than n^1.1. This bound however deteriorates with increasing r. It is a natural question to ask if we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger regime of r. We here prove a lower bound which does not deteriorate with r, however for a specific instance of d = d(n) but for a wider range of r. Formally, we show that there exists an explicit polynomial on n^O(1) variables and degree Θ(log² n) such that any depth four circuit of bounded individual degree r<n^0.2 must have size at least exp(Ω(log² n)). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).

Cite as

Suryajith Chillara. On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chillara:LIPIcs.STACS.2020.47,
  author =	{Chillara, Suryajith},
  title =	{{On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{47:1--47:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.47},
  URN =		{urn:nbn:de:0030-drops-119084},
  doi =		{10.4230/LIPIcs.STACS.2020.47},
  annote =	{Keywords: Lower Bounds, Multilinear, Multi-r-ic}
}
Document
More on AC^0[oplus] and Variants of the Majority Function

Authors: Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
In this paper we prove two results about AC^0[oplus] circuits. (1) We show that for d(N) = o(sqrt(log N/log log N)) and N <= s(N) <= 2^(dN^(1/4d^2)) there is an explicit family of functions {f_N:{0,1}^N - > {0,1}} such that - f_N has uniform AC^0 formulas of depth d and size at most s; - f_N does not have AC^0[oplus] formulas of depth d and size s^epsilon, where epsilon is a fixed absolute constant. This gives a quantitative improvement on the recent result of Limaye, Srinivasan, Sreenivasaiah, Tripathi, and Venkitesh, (STOC, 2019), which proved a similar Fixed-Depth Size-Hierarchy theorem but for d << log log N and s << exp(N^(1/2^Omega(d))). As in the previous result, we use the Coin Problem to prove our hierarchy theorem. Our main technical result is the construction of uniform size-optimal formulas for solving the coin problem with improved sample complexity (1/delta)^O(d) (down from (1/delta)^(2^O(d)) in the previous result). (2) In our second result, we show that randomness buys depth in the AC^0[oplus] setting. Formally, we show that for any fixed constant d >= 2, there is a family of Boolean functions that has polynomial-sized randomized uniform AC^0 circuits of depth d but no polynomial-sized (deterministic) AC^0[oplus] circuits of depth d. Previously Viola (Computational Complexity, 2014) showed that an increase in depth (by at least 2) is essential to avoid superpolynomial blow-up while derandomizing randomized AC^0 circuits. We show that an increase in depth (by at least 1) is essential even for AC^0[oplus]. As in Viola’s result, the separating examples are promise variants of the Majority function on N inputs that accept inputs of weight at least N/2 + N/(log N)^(d-1) and reject inputs of weight at most N/2 - N/(log N)^(d-1).

Cite as

Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi. More on AC^0[oplus] and Variants of the Majority Function. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{limaye_et_al:LIPIcs.FSTTCS.2019.22,
  author =	{Limaye, Nutan and Srinivasan, Srikanth and Tripathi, Utkarsh},
  title =	{{More on AC^0\lbrackoplus\rbrack and Variants of the Majority Function}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{22:1--22:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.22},
  URN =		{urn:nbn:de:0030-drops-115844},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.22},
  annote =	{Keywords: AC^0\lbrackoplus\rbrack, Coin Problem, Promise Majority}
}
Document
A #SAT Algorithm for Small Constant-Depth Circuits with PTF Gates

Authors: Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, and Srikanth Srinivasan

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
We show that there is a zero-error randomized algorithm that, when given a small constant-depth Boolean circuit C made up of gates that compute constant-degree Polynomial Threshold functions or PTFs (i.e., Boolean functions that compute signs of constant-degree polynomials), counts the number of satisfying assignments to C in significantly better than brute-force time. Formally, for any constants d,k, there is an epsilon > 0 such that the zero-error randomized algorithm counts the number of satisfying assignments to a given depth-d circuit C made up of k-PTF gates such that C has size at most n^{1+epsilon}. The algorithm runs in time 2^{n-n^{Omega(epsilon)}}. Before our result, no algorithm for beating brute-force search was known for counting the number of satisfying assignments even for a single degree-k PTF (which is a depth-1 circuit of linear size). The main new tool is the use of a learning algorithm for learning degree-1 PTFs (or Linear Threshold Functions) using comparison queries due to Kane, Lovett, Moran and Zhang (FOCS 2017). We show that their ideas fit nicely into a memoization approach that yields the #SAT algorithms.

Cite as

Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, and Srikanth Srinivasan. A #SAT Algorithm for Small Constant-Depth Circuits with PTF Gates. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.ITCS.2019.8,
  author =	{Bajpai, Swapnam and Krishan, Vaibhav and Kush, Deepanshu and Limaye, Nutan and Srinivasan, Srikanth},
  title =	{{A #SAT Algorithm for Small Constant-Depth Circuits with PTF Gates}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.8},
  URN =		{urn:nbn:de:0030-drops-101010},
  doi =		{10.4230/LIPIcs.ITCS.2019.8},
  annote =	{Keywords: SAT, Polynomial Threshold Functions, Constant-depth Boolean Circuits, Linear Decision Trees, Zero-error randomized algorithms}
}
Document
A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

Authors: Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We show explicit separations between the expressive powers of multilinear formulas of small-depth and all polynomial sizes. Formally, for any s = s(n) = n^{O(1)} and any delta>0, we construct explicit families of multilinear polynomials P_n in F[x_1,...,x_n] that have multilinear formulas of size s and depth three but no multilinear formulas of size s^{1/2-delta} and depth o(log n/log log n). As far as we know, this is the first such result for an algebraic model of computation. Our proof can be viewed as a derandomization of a lower bound technique of Raz (JACM 2009) using epsilon-biased spaces.

Cite as

Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 36:1-36:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chillara_et_al:LIPIcs.ICALP.2018.36,
  author =	{Chillara, Suryajith and Limaye, Nutan and Srinivasan, Srikanth},
  title =	{{A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.36},
  URN =		{urn:nbn:de:0030-drops-90401},
  doi =		{10.4230/LIPIcs.ICALP.2018.36},
  annote =	{Keywords: Algebraic circuit complexity, Multilinear formulas, Lower Bounds}
}
Document
Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications

Authors: Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within P. In this paper, we study the algebraic formula complexity of multiplying d many 2x2 matrices, denoted IMM_d, and show that the well-known divide-and-conquer algorithm cannot be significantly improved at any depth, as long as the formulas are multilinear. Formally, for each depth Delta <= log d, we show that any product-depth Delta multilinear formula for IMM_d must have size exp(Omega(Delta d^{1/Delta})). It also follows from this that any multilinear circuit of product-depth Delta for the same polynomial of the above form must have a size of exp(Omega(d^{1/Delta})). In particular, any polynomial-sized multilinear formula for IMM_d must have depth Omega(log d), and any polynomial-sized multilinear circuit for IMM_d must have depth Omega(log d/log log d). Both these bounds are tight up to constant factors. Our lower bound has the following consequences for multilinear formula complexity. Depth-reduction: A well-known result of Brent (JACM 1974) implies that any formula of size s can be converted to one of size s^{O(1)} and depth O(log s); further, this reduction continues to hold for multilinear formulas. On the other hand, our lower bound implies that any depth-reduction in the multilinear setting cannot reduce the depth to o(log s) without a superpolynomial blow-up in size. Separations from general formulas: Shpilka and Yehudayoff (FnTTCS 2010) asked whether general formulas can be more efficient than multilinear formulas for computing multilinear polynomials. Our result, along with a non-trivial upper bound for IMM_d implied by a result of Gupta, Kamath, Kayal and Saptharishi (SICOMP 2016), shows that for any size s and product-depth Delta = o(log s), general formulas of size s and product-depth Delta cannot be converted to multilinear formulas of size s^{O(1)} and product-depth Delta, when the underlying field has characteristic zero.

Cite as

Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chillara_et_al:LIPIcs.STACS.2018.21,
  author =	{Chillara, Suryajith and Limaye, Nutan and Srinivasan, Srikanth},
  title =	{{Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{21:1--21:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.21},
  URN =		{urn:nbn:de:0030-drops-85235},
  doi =		{10.4230/LIPIcs.STACS.2018.21},
  annote =	{Keywords: Algebraic circuit complexity, Multilinear formulas, Lower Bounds}
}
  • Refine by Author
  • 13 Limaye, Nutan
  • 9 Srinivasan, Srikanth
  • 3 Chillara, Suryajith
  • 2 Datta, Samir
  • 2 Krebs, Andreas
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Algebraic complexity theory
  • 4 Theory of computation → Circuit complexity
  • 1 Computing methodologies → Representation of polynomials
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Pseudorandomness and derandomization

  • Refine by Keyword
  • 5 Lower Bounds
  • 2 Algebraic circuit complexity
  • 2 Multilinear formulas
  • 2 low-depth circuits
  • 2 lower bounds
  • Show More...

  • Refine by Type
  • 20 document

  • Refine by Publication Year
  • 4 2024
  • 3 2018
  • 3 2020
  • 2 2019
  • 2 2022
  • Show More...