38 Search Results for "Lutz, Carsten"


Volume

LIPIcs, Volume 155

23rd International Conference on Database Theory (ICDT 2020)

ICDT 2020, March 30 to April 2, 2020, Copenhagen, Denmark

Editors: Carsten Lutz and Jean Christoph Jung

Document
A Modular Formalization of Superposition in Isabelle/HOL

Authors: Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Superposition is an efficient proof calculus for reasoning about first-order logic with equality that is implemented in many automatic theorem provers. It works by saturating the given set of clauses and is refutationally complete, meaning that if the set is inconsistent, the saturation will contain a contradiction. In this work, we restructured the completeness proof to cleanly separate the ground (i.e., variable-free) and nonground aspects, and we formalized the result in Isabelle/HOL. We relied on the IsaFoR library for first-order terms and on the Isabelle saturation framework.

Cite as

Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret. A Modular Formalization of Superposition in Isabelle/HOL. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{desharnais_et_al:LIPIcs.ITP.2024.12,
  author =	{Desharnais, Martin and Toth, Balazs and Waldmann, Uwe and Blanchette, Jasmin and Tourret, Sophie},
  title =	{{A Modular Formalization of Superposition in Isabelle/HOL}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.12},
  URN =		{urn:nbn:de:0030-drops-207401},
  doi =		{10.4230/LIPIcs.ITP.2024.12},
  annote =	{Keywords: Superposition, verification, first-order logic, higher-order logic}
}
Document
Conjunctive Queries: Unique Characterizations and Exact Learnability

Authors: Balder ten Cate and Victor Dalmau

Published in: LIPIcs, Volume 186, 24th International Conference on Database Theory (ICDT 2021)


Abstract
We answer the question of which conjunctive queries are uniquely characterized by polynomially many positive and negative examples, and how to construct such examples efficiently. As a consequence, we obtain a new efficient exact learning algorithm for a class of conjunctive queries. At the core of our contributions lie two new polynomial-time algorithms for constructing frontiers in the homomorphism lattice of finite structures. We also discuss implications for the unique characterizability and learnability of schema mappings and of description logic concepts.

Cite as

Balder ten Cate and Victor Dalmau. Conjunctive Queries: Unique Characterizations and Exact Learnability. In 24th International Conference on Database Theory (ICDT 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 186, pp. 9:1-9:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{tencate_et_al:LIPIcs.ICDT.2021.9,
  author =	{ten Cate, Balder and Dalmau, Victor},
  title =	{{Conjunctive Queries: Unique Characterizations and Exact Learnability}},
  booktitle =	{24th International Conference on Database Theory (ICDT 2021)},
  pages =	{9:1--9:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-179-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{186},
  editor =	{Yi, Ke and Wei, Zhewei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2021.9},
  URN =		{urn:nbn:de:0030-drops-137172},
  doi =		{10.4230/LIPIcs.ICDT.2021.9},
  annote =	{Keywords: Conjunctive Queries, Homomorphisms, Frontiers, Unique Characterizations, Exact Learnability, Schema Mappings, Description Logic}
}
Document
Answer Counting Under Guarded TGDs

Authors: Cristina Feier, Carsten Lutz, and Marcin Przybyłko

Published in: LIPIcs, Volume 186, 24th International Conference on Database Theory (ICDT 2021)


Abstract
We study the complexity of answer counting for ontology-mediated queries and for querying under constraints, considering conjunctive queries and unions thereof (UCQs) as the query language and guarded TGDs as the ontology and constraint language, respectively. Our main result is a classification according to whether answer counting is fixed-parameter tractable (FPT), W[1]-equivalent, #W[1]-equivalent, #W[2]-hard, or #A[2]-equivalent, lifting a recent classification for UCQs without ontologies and constraints due to Dell et al. [Holger Dell et al., 2019]. The classification pertains to various structural measures, namely treewidth, contract treewidth, starsize, and linked matching number. Our results rest on the assumption that the arity of relation symbols is bounded by a constant and, in the case of ontology-mediated querying, that all symbols from the ontology and query can occur in the data (so-called full data schema). We also study the meta-problems for the mentioned structural measures, that is, to decide whether a given ontology-mediated query or constraint-query specification is equivalent to one for which the structural measure is bounded.

Cite as

Cristina Feier, Carsten Lutz, and Marcin Przybyłko. Answer Counting Under Guarded TGDs. In 24th International Conference on Database Theory (ICDT 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 186, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{feier_et_al:LIPIcs.ICDT.2021.11,
  author =	{Feier, Cristina and Lutz, Carsten and Przyby{\l}ko, Marcin},
  title =	{{Answer Counting Under Guarded TGDs}},
  booktitle =	{24th International Conference on Database Theory (ICDT 2021)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-179-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{186},
  editor =	{Yi, Ke and Wei, Zhewei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2021.11},
  URN =		{urn:nbn:de:0030-drops-137195},
  doi =		{10.4230/LIPIcs.ICDT.2021.11},
  annote =	{Keywords: Ontology-Mediated Querying, Querying under Constraints, Answer Counting, Parameterized Complexity}
}
Document
Complete Volume
LIPIcs, Vol. 155, ICDT 2020, Complete Volume

Authors: Carsten Lutz and Jean Christoph Jung

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
LIPIcs, Vol. 155, ICDT 2020, Complete Volume

Cite as

23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 1-454, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{lutz_et_al:LIPIcs.ICDT.2020,
  title =	{{LIPIcs, Vol. 155, ICDT 2020, Complete Volume}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{1--454},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020},
  URN =		{urn:nbn:de:0030-drops-119239},
  doi =		{10.4230/LIPIcs.ICDT.2020},
  annote =	{Keywords: LIPIcs, Vol. 155, ICDT 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Carsten Lutz and Jean Christoph Jung

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lutz_et_al:LIPIcs.ICDT.2020.0,
  author =	{Lutz, Carsten and Jung, Jean Christoph},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.0},
  URN =		{urn:nbn:de:0030-drops-119244},
  doi =		{10.4230/LIPIcs.ICDT.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Facets of Probabilistic Databases (Invited Talk)

Authors: Benny Kimelfeld

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
Probabilistic databases are commonly known in the form of the tuple-independent model, where the validity of every tuple is an independent random event. Conceptually, the notion is more general, as a probabilistic database refers to any probability distribution over ordinary databases. A central computational problem is that of marginal inference for database queries: what is the probability that a given tuple is a query answer? In this talk, I will discuss recent developments in several research directions that, collectively, position probabilistic databases as the common and natural foundation of various challenges at the core of data analytics. Examples include reasoning about uncertain preferences from conventional distributions such as the Mallows model, data cleaning and repairing in probabilistic paradigms such as the HoloClean system, and the explanation of query answers through concepts from cooperative game theory such as the Shapley value and the Banzhaf Power Index. While these challenges manifest different facets of probabilistic databases, I will show how they interrelate and, moreover, how they relate to the basic theory of inference over tuple-independent databases.

Cite as

Benny Kimelfeld. Facets of Probabilistic Databases (Invited Talk). In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kimelfeld:LIPIcs.ICDT.2020.1,
  author =	{Kimelfeld, Benny},
  title =	{{Facets of Probabilistic Databases}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.1},
  URN =		{urn:nbn:de:0030-drops-119258},
  doi =		{10.4230/LIPIcs.ICDT.2020.1},
  annote =	{Keywords: Probabilistic databases, data cleaning, preference models, Shapley value}
}
Document
Invited Talk
What Makes a Variant of Query Determinacy (Un)Decidable? (Invited Talk)

Authors: Jerzy Marcinkowski

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
This paper was written as the companion paper of the ICDT 2020 invited tutorial. Query determinacy is a broad topic, with literally hundreds of papers published since late 1980s. This paper is not going to be a "survey" but rather a personal perspective of a person somehow involved in the recent developments in the area. First I explain how, in the last 30+ years, the question of determinacy was formalized. There are many parameters here: obviously one needs to choose the query language of the available views and the query language of the query itself. But - surprisingly - there is also some choice regarding what the word "to compute" actually means in this context. Then I concentrate on certain variants of the decision problem of determinacy (for each choice of parameters there is one such problem) and explain how I understand the mechanisms rendering such variants of determinacy decidable or undecidable. This is on a rather informal level. No really new theorems are presented, but I show some improvements of existing theorems and also simplified proofs of some of the earlier results.

Cite as

Jerzy Marcinkowski. What Makes a Variant of Query Determinacy (Un)Decidable? (Invited Talk). In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{marcinkowski:LIPIcs.ICDT.2020.2,
  author =	{Marcinkowski, Jerzy},
  title =	{{What Makes a Variant of Query Determinacy (Un)Decidable?}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.2},
  URN =		{urn:nbn:de:0030-drops-119265},
  doi =		{10.4230/LIPIcs.ICDT.2020.2},
  annote =	{Keywords: database theory, query, view, determinacy}
}
Document
Invited Talk
Current Challenges in Graph Databases (Invited Talk)

Authors: Juan L. Reutter

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
As graph databases grow in popularity, decades of work in graph query languages and models are materialising in industry standards and in the construction of new graph database systems. However, this surge in graph systems has in turn opened up a series of new, interesting research problems related to graph databases. Our first set of problems has to do with more efficient ways of computing the answers of graph queries, specifically graph patterns, path queries, and combinations between them. Traditionally, researchers in graph databases have pointed out that relational systems are ill-equipped to process these types of queries, and if one looks at the performance of native graph database systems, there is clearly a lot of room for improvement. The talk focuses on two possible directions for improving the state of the art in graph query processing. The first is implementing worst-case optimal algorithms for processing graph patterns that traduce in relational queries with several joins. Some advances are already in development (see e.g. Nguyen, Dung, et al. "Join processing for graph patterns: An old dog with new tricks." GRADES'15. or Hogan, Aidan, et al. "A Worst-Case Optimal Join Algorithm for SPARQL." ISWC’19.), but we are still far from a full fledged solution: most algorithms require complex data structures, or need further support in terms of heuristics to select an order in which joins are processed. Second, we need to understand what is the best way of evaluating path queries (that is, finding all pairs of nodes connected by a path), in such a way that these results can be further integrated with other query results in a graph system pipeline. We already have complexity results regarding path computation and enumeration for different semantics of path queries (see e.g. Martens, Wim, and Tina Trautner. "Evaluation and enumeration problems for regular path queries." ICDT'18. or Bagan, Guillaume, Angela Bonifati, and Benoit Groz. "A trichotomy for regular simple path queries on graphs." PODS'13.), but still very little is known in terms of optimal processing of path queries when inside a tractable fragment. Our second set of problems is related to graph analytics, one of the current selling points of graph databases. Systems should be able to run more complex analytical queries involving tasks such as more complex path finding, centrality or clustering. It is also important to be able to run these algorithms not over native graphs, but perhaps over a certain set of nodes or edges previously selected by a graph query, and one may also want to pose further queries over the result of the analytics task. Finally, all of this should be done in an efficient way, specially in the prospect that graph databases may contain a huge amount of nodes. In this talk I will discuss possible approaches to perform these operations, covering aspects from the design of languages for graph analytics to efficient ways of processing them, and also comparing the expressive power of graph analytics solutions with other forms of graph computation.

Cite as

Juan L. Reutter. Current Challenges in Graph Databases (Invited Talk). In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{reutter:LIPIcs.ICDT.2020.3,
  author =	{Reutter, Juan L.},
  title =	{{Current Challenges in Graph Databases}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.3},
  URN =		{urn:nbn:de:0030-drops-119272},
  doi =		{10.4230/LIPIcs.ICDT.2020.3},
  annote =	{Keywords: Graph databases, Join algorithms, path queries, graph analytics}
}
Document
Executable First-Order Queries in the Logic of Information Flows

Authors: Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
The logic of information flows (LIF) has recently been proposed as a general framework in the field of knowledge representation. In this framework, tasks of a procedural nature can still be modeled in a declarative, logic-based fashion. In this paper, we focus on the task of query processing under limited access patterns, a well-studied problem in the database literature. We show that LIF is well-suited for modeling this task. Toward this goal, we introduce a variant of LIF called "forward" LIF, in a first-order setting. We define FLIF^io, a syntactical fragment of forward LIF, and show that it corresponds exactly to the "executable" fragment of first-order logic defined by Nash and Ludäscher. The definition of FLIF^io involves a classification of the free variables of an expression into "input" and "output" variables. Our result hinges on inertia and determinacy laws for forward LIF expressions, which are interesting in their own right. These laws are formulated in terms of the input and output variables.

Cite as

Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche. Executable First-Order Queries in the Logic of Information Flows. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aamer_et_al:LIPIcs.ICDT.2020.4,
  author =	{Aamer, Heba and Bogaerts, Bart and Surinx, Dimitri and Ternovska, Eugenia and Van den Bussche, Jan},
  title =	{{Executable First-Order Queries in the Logic of Information Flows}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.4},
  URN =		{urn:nbn:de:0030-drops-119284},
  doi =		{10.4230/LIPIcs.ICDT.2020.4},
  annote =	{Keywords: Logic of Information Flows, Limited access pattern, Executable first-order logic}
}
Document
A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Authors: Antoine Amarilli and İsmail İlkan Ceylan

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
We study the problem of probabilistic query evaluation (PQE) over probabilistic graphs, namely, tuple-independent probabilistic databases (TIDs) on signatures of arity two. Our focus is the class of queries that is closed under homomorphisms, or equivalently, the infinite unions of conjunctive queries, denoted UCQ∞. Our main result states that all unbounded queries in UCQ∞ are #P-hard for PQE. As bounded queries in UCQ∞ are already classified by the dichotomy of Dalvi and Suciu [Dalvi and Suciu, 2012], our results and theirs imply a complete dichotomy on PQE for UCQ∞ queries over probabilistic graphs. This dichotomy covers in particular all fragments in UCQ∞ such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries on arity-two signatures. Our result is shown by reducing from counting the valuations of positive partitioned 2-DNF formulae (#PP2DNF) for some queries, or from the source-to-target reliability problem in an undirected graph (#U-ST-CON) for other queries, depending on properties of minimal models.

Cite as

Antoine Amarilli and İsmail İlkan Ceylan. A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{amarilli_et_al:LIPIcs.ICDT.2020.5,
  author =	{Amarilli, Antoine and Ceylan, \.{I}smail \.{I}lkan},
  title =	{{A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.5},
  URN =		{urn:nbn:de:0030-drops-119295},
  doi =		{10.4230/LIPIcs.ICDT.2020.5},
  annote =	{Keywords: Tuple-independent database, #P-hardness, recursive queries, homomorphism-closed queries}
}
Document
On the Expressiveness of LARA: A Unified Language for Linear and Relational Algebra

Authors: Pablo Barceló, Nelson Higuera, Jorge Pérez, and Bernardo Subercaseaux

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
We study the expressive power of the Lara language - a recently proposed unified model for expressing relational and linear algebra operations - both in terms of traditional database query languages and some analytic tasks often performed in machine learning pipelines. We start by showing Lara to be expressive complete with respect to first-order logic with aggregation. Since Lara is parameterized by a set of user-defined functions which allow to transform values in tables, the exact expressive power of the language depends on how these functions are defined. We distinguish two main cases depending on the level of genericity queries are enforced to satisfy. Under strong genericity assumptions the language cannot express matrix convolution, a very important operation in current machine learning operations. This language is also local, and thus cannot express operations such as matrix inverse that exhibit a recursive behavior. For expressing convolution, one can relax the genericity requirement by adding an underlying linear order on the domain. This, however, destroys locality and turns the expressive power of the language much more difficult to understand. In particular, although under complexity assumptions the resulting language can still not express matrix inverse, a proof of this fact without such assumptions seems challenging to obtain.

Cite as

Pablo Barceló, Nelson Higuera, Jorge Pérez, and Bernardo Subercaseaux. On the Expressiveness of LARA: A Unified Language for Linear and Relational Algebra. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 6:1-6:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{barcelo_et_al:LIPIcs.ICDT.2020.6,
  author =	{Barcel\'{o}, Pablo and Higuera, Nelson and P\'{e}rez, Jorge and Subercaseaux, Bernardo},
  title =	{{On the Expressiveness of LARA: A Unified Language for Linear and Relational Algebra}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{6:1--6:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.6},
  URN =		{urn:nbn:de:0030-drops-119305},
  doi =		{10.4230/LIPIcs.ICDT.2020.6},
  annote =	{Keywords: languages for linear and relational algebra, expressive power, first order logic with aggregation, matrix convolution, matrix inverse, query genericity, locality of queries, safety}
}
Document
Random Sampling and Size Estimation Over Cyclic Joins

Authors: Yu Chen and Ke Yi

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
Computing joins is expensive, and often unnecessary when the output size is large. In 1999, Chaudhuri et al. [Surajit Chaudhuri et al., 1999] posed the problem of random sampling over joins as a potentially effective approach to avoiding computing the join in full, while obtaining important statistical information about the join results. Unfortunately, no significant progress has been made in the last 20 years, except for the case of acyclic joins. In this paper, we present the first non-trivial result on sampling over cyclic joins. We show that after a linear-time preprocessing step, a join result can be drawn uniformly at random in expected time O(IN^ρ/OUT), where IN^ρ is known as the AGM bound of the join and OUT is its output size. This result holds for all joins on binary relations, as well as certain joins on relations of higher arity. We further show how this algorithm immediately leads to a join size estimation algorithm with the same running time.

Cite as

Yu Chen and Ke Yi. Random Sampling and Size Estimation Over Cyclic Joins. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICDT.2020.7,
  author =	{Chen, Yu and Yi, Ke},
  title =	{{Random Sampling and Size Estimation Over Cyclic Joins}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.7},
  URN =		{urn:nbn:de:0030-drops-119315},
  doi =		{10.4230/LIPIcs.ICDT.2020.7},
  annote =	{Keywords: Random sampling, joins, join size estimation}
}
Document
Weight Annotation in Information Extraction

Authors: Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
The framework of document spanners abstracts the task of information extraction from text as a function that maps every document (a string) into a relation over the document’s spans (intervals identified by their start and end indices). For instance, the regular spanners are the closure under the Relational Algebra (RA) of the regular expressions with capture variables, and the expressive power of the regular spanners is precisely captured by the class of vset-automata - a restricted class of transducers that mark the endpoints of selected spans. In this work, we embark on the investigation of document spanners that can annotate extractions with auxiliary information such as confidence, support, and confidentiality measures. To this end, we adopt the abstraction of provenance semirings by Green et al., where tuples of a relation are annotated with the elements of a commutative semiring, and where the annotation propagates through the (positive) RA operators via the semiring operators. Hence, the proposed spanner extension, referred to as an annotator, maps every string into an annotated relation over the spans. As a specific instantiation, we explore weighted vset-automata that, similarly to weighted automata and transducers, attach semiring elements to transitions. We investigate key aspects of expressiveness, such as the closure under the positive RA, and key aspects of computational complexity, such as the enumeration of annotated answers and their ranked enumeration in the case of numeric semirings. For a number of these problems, fundamental properties of the underlying semiring, such as positivity, are crucial for establishing tractability.

Cite as

Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. Weight Annotation in Information Extraction. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{doleschal_et_al:LIPIcs.ICDT.2020.8,
  author =	{Doleschal, Johannes and Kimelfeld, Benny and Martens, Wim and Peterfreund, Liat},
  title =	{{Weight Annotation in Information Extraction}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.8},
  URN =		{urn:nbn:de:0030-drops-119325},
  doi =		{10.4230/LIPIcs.ICDT.2020.8},
  annote =	{Keywords: Information extraction, regular document spanners, weighted automata, provenance semirings, K-relations}
}
Document
Containment of UC2RPQ: The Hard and Easy Cases

Authors: Diego Figueira

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
We study the containment problem for UC2RPQ, that is, two-way Regular Path Queries, closed under conjunction, projection and union. We show a dichotomy property between PSpace-c and ExpSpace-c based on a property on the underlying graph of queries. We show that for any class C of graphs, the containment problem for queries whose underlying graph is in C is in PSpace if and only if C has bounded bridgewidth. Bridgewidth is a graph measure we introduce to this end, defined as the maximum size of a minimal edge separator of a graph.

Cite as

Diego Figueira. Containment of UC2RPQ: The Hard and Easy Cases. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{figueira:LIPIcs.ICDT.2020.9,
  author =	{Figueira, Diego},
  title =	{{Containment of UC2RPQ: The Hard and Easy Cases}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.9},
  URN =		{urn:nbn:de:0030-drops-119330},
  doi =		{10.4230/LIPIcs.ICDT.2020.9},
  annote =	{Keywords: Regular Path Queries (RPQ), 2RPQ, CRPQ, C2RPQ, UC2RPQ, graph databases, containment, inclusion, equivalence, dichotomy, graph measure, bridge-width (bridgewidth), minimal edge separator, minimal cut-set, max-cut, tree-width (treewidth)}
}
  • Refine by Author
  • 10 Lutz, Carsten
  • 4 Jung, Jean Christoph
  • 3 Kimelfeld, Benny
  • 3 Riveros, Cristian
  • 2 Feier, Cristina
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Computational Complexity
  • 2 Conjunctive Queries
  • 2 Constraint Satisfaction
  • 2 Decidable Fragments of First-Order Logic
  • 2 Description Logic
  • Show More...

  • Refine by Type
  • 37 document
  • 1 volume

  • Refine by Publication Year
  • 28 2020
  • 2 2017
  • 2 2021
  • 1 2008
  • 1 2014
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail