5 Search Results for "Peebles, John"


Document
BPL ⊆ L-AC¹

Authors: Kuan Cheng and Yichuan Wang

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Whether BPL = 𝖫 (which is conjectured to be equal) or even whether BPL ⊆ NL, is a big open problem in theoretical computer science. It is well known that 𝖫 ⊆ NL ⊆ L-AC¹. In this work we show that BPL ⊆ L-AC¹ also holds. Our proof is based on a new iteration method for boosting precision in approximating matrix powering, which is inspired by the Richardson Iteration method developed in a recent line of work [AmirMahdi Ahmadinejad et al., 2020; Edward Pyne and Salil P. Vadhan, 2021; Gil Cohen et al., 2021; William M. Hoza, 2021; Gil Cohen et al., 2023; Aaron (Louie) Putterman and Edward Pyne, 2023; Lijie Chen et al., 2023]. We also improve the algorithm for approximate counting in low-depth L-AC circuits from an additive error setting to a multiplicative error setting.

Cite as

Kuan Cheng and Yichuan Wang. BPL ⊆ L-AC¹. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.CCC.2024.32,
  author =	{Cheng, Kuan and Wang, Yichuan},
  title =	{{BPL ⊆ L-AC¹}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.32},
  URN =		{urn:nbn:de:0030-drops-204282},
  doi =		{10.4230/LIPIcs.CCC.2024.32},
  annote =	{Keywords: Randomized Space Complexity, Circuit Complexity, Derandomization}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Sharp Noisy Binary Search with Monotonic Probabilities

Authors: Lucas Gretta and Eric Price

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We revisit the noisy binary search model of [Karp and Kleinberg, 2007], in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within ε) of a target value τ. This generalized the fixed-noise model of [Burnashev and Zigangirov, 1974], in which p_i = 1/2 ± ε, to a setting where coins near the target may be indistinguishable from it. It was shown in [Karp and Kleinberg, 2007] that Θ(1/ε² log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-δ from 1/C_{τ, ε} ⋅ (log₂ n + O(log^{2/3} n log^{1/3} 1/(δ) + log 1/(δ))) samples, where C_{τ, ε} is the optimal such constant achievable. For δ > n^{-o(1)} this is within 1 + o(1) of optimal, and for δ ≪ 1 it is the first bound within constant factors of optimal.

Cite as

Lucas Gretta and Eric Price. Sharp Noisy Binary Search with Monotonic Probabilities. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 75:1-75:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gretta_et_al:LIPIcs.ICALP.2024.75,
  author =	{Gretta, Lucas and Price, Eric},
  title =	{{Sharp Noisy Binary Search with Monotonic Probabilities}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{75:1--75:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.75},
  URN =		{urn:nbn:de:0030-drops-202188},
  doi =		{10.4230/LIPIcs.ICALP.2024.75},
  annote =	{Keywords: fine-grained algorithms, randomized/probabilistic methods, sublinear/streaming algorithms, noisy binary search}
}
Document
Track A: Algorithms, Complexity and Games
Better Sparsifiers for Directed Eulerian Graphs

Authors: Sushant Sachdeva, Anvith Thudi, and Yibin Zhao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial algorithmic primitives to fast computation of fundamental problems on random walks, such as computing stationary distributions, hitting and commute times, and personalized PageRank vectors. While spectral sparsification is well understood for undirected graphs and it is known that for every graph G, (1+ε)-sparsifiers with O(nε^{-2}) edges exist [Batson-Spielman-Srivastava, STOC '09] (which is optimal), the best known constructions of Eulerian sparsifiers require Ω(nε^{-2}log⁴ n) edges and are based on short-cycle decompositions [Chu et al., FOCS '18]. In this paper, we give improved constructions of Eulerian sparsifiers, specifically: 1) We show that for every directed Eulerian graph G→, there exists an Eulerian sparsifier with O(nε^{-2} log² n log²log n + nε^{-4/3}log^{8/3} n) edges. This result is based on combining short-cycle decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS '18, SICOMP] and [Parter-Yogev, ICALP '19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC '23]. 2) We give an improved analysis of the constructions based on short-cycle decompositions, giving an m^{1+δ}-time algorithm for any constant δ > 0 for constructing Eulerian sparsifiers with O(nε^{-2}log³ n) edges.

Cite as

Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. Better Sparsifiers for Directed Eulerian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 119:1-119:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sachdeva_et_al:LIPIcs.ICALP.2024.119,
  author =	{Sachdeva, Sushant and Thudi, Anvith and Zhao, Yibin},
  title =	{{Better Sparsifiers for Directed Eulerian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{119:1--119:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.119},
  URN =		{urn:nbn:de:0030-drops-202628},
  doi =		{10.4230/LIPIcs.ICALP.2024.119},
  annote =	{Keywords: Graph algorithms, Linear algebra and computation, Discrepancy theory}
}
Document
Sample-Optimal Identity Testing with High Probability

Authors: Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We study the problem of testing identity against a given distribution with a focus on the high confidence regime. More precisely, given samples from an unknown distribution p over n elements, an explicitly given distribution q, and parameters 0< epsilon, delta < 1, we wish to distinguish, with probability at least 1-delta, whether the distributions are identical versus epsilon-far in total variation distance. Most prior work focused on the case that delta = Omega(1), for which the sample complexity of identity testing is known to be Theta(sqrt{n}/epsilon^2). Given such an algorithm, one can achieve arbitrarily small values of delta via black-box amplification, which multiplies the required number of samples by Theta(log(1/delta)). We show that black-box amplification is suboptimal for any delta = o(1), and give a new identity tester that achieves the optimal sample complexity. Our new upper and lower bounds show that the optimal sample complexity of identity testing is Theta((1/epsilon^2) (sqrt{n log(1/delta)} + log(1/delta))) for any n, epsilon, and delta. For the special case of uniformity testing, where the given distribution is the uniform distribution U_n over the domain, our new tester is surprisingly simple: to test whether p = U_n versus d_{TV} (p, U_n) >= epsilon, we simply threshold d_{TV}({p^}, U_n), where {p^} is the empirical probability distribution. The fact that this simple "plug-in" estimator is sample-optimal is surprising, even in the constant delta case. Indeed, it was believed that such a tester would not attain sublinear sample complexity even for constant values of epsilon and delta. An important contribution of this work lies in the analysis techniques that we introduce in this context. First, we exploit an underlying strong convexity property to bound from below the expectation gap in the completeness and soundness cases. Second, we give a new, fast method for obtaining provably correct empirical estimates of the true worst-case failure probability for a broad class of uniformity testing statistics over all possible input distributions - including all previously studied statistics for this problem. We believe that our novel analysis techniques will be useful for other distribution testing problems as well.

Cite as

Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Sample-Optimal Identity Testing with High Probability. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{diakonikolas_et_al:LIPIcs.ICALP.2018.41,
  author =	{Diakonikolas, Ilias and Gouleakis, Themis and Peebles, John and Price, Eric},
  title =	{{Sample-Optimal Identity Testing with High Probability}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.41},
  URN =		{urn:nbn:de:0030-drops-90459},
  doi =		{10.4230/LIPIcs.ICALP.2018.41},
  annote =	{Keywords: distribution testing, property testing, sample complexity}
}
  • Refine by Author
  • 2 Price, Eric
  • 1 Chen, Yu
  • 1 Cheng, Kuan
  • 1 Diakonikolas, Ilias
  • 1 Gouleakis, Themis
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Lower bounds and information complexity
  • 1 Computing methodologies → Linear algebra algorithms
  • 1 Mathematics of computing → Computations on matrices
  • 1 Mathematics of computing → Probability and statistics
  • 1 Theory of computation → Computational complexity and cryptography
  • Show More...

  • Refine by Keyword
  • 1 Circuit Complexity
  • 1 Derandomization
  • 1 Discrepancy theory
  • 1 Dynamic Streaming
  • 1 Expander Decomposition
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 4 2024
  • 1 2018