26 Search Results for "Raymond, Jean-Florent"


Document
Complexity and Algorithms for ISOMETRIC PATH COVER on Chordal Graphs and Beyond

Authors: Dibyayan Chakraborty, Antoine Dailly, Sandip Das, Florent Foucaud, Harmender Gahlawat, and Subir Kumar Ghosh

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k+7 for such graphs, and to graphs of treelength at most 𝓁, where the approximation ratio is at most 6𝓁+2.

Cite as

Dibyayan Chakraborty, Antoine Dailly, Sandip Das, Florent Foucaud, Harmender Gahlawat, and Subir Kumar Ghosh. Complexity and Algorithms for ISOMETRIC PATH COVER on Chordal Graphs and Beyond. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 12:1-12:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.ISAAC.2022.12,
  author =	{Chakraborty, Dibyayan and Dailly, Antoine and Das, Sandip and Foucaud, Florent and Gahlawat, Harmender and Ghosh, Subir Kumar},
  title =	{{Complexity and Algorithms for ISOMETRIC PATH COVER on Chordal Graphs and Beyond}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.12},
  URN =		{urn:nbn:de:0030-drops-172974},
  doi =		{10.4230/LIPIcs.ISAAC.2022.12},
  annote =	{Keywords: Shortest paths, Isometric path cover, Chordal graph, Interval graph, AT-free graph, Approximation algorithm, FPT algorithm, Treewidth, Chordality, Treelength}
}
Document
Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model

Authors: Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

Published in: LIPIcs, Volume 166, 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
Reactive programming is a programming paradigm whereby programs are internally represented by a dependency graph, which is used to automatically (re)compute parts of a program whenever its input changes. In practice reactive programming can only be used for some parts of an application: a reactive program is usually embedded in an application that is still written in ordinary imperative languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill "the awkward squad for reactive programming" as 3 concerns that are essential for real-world software development, but that do not fit within reactive programming. They are related to long lasting computations, side-effects, and the coordination between imperative and reactive code. To solve these issues we design a new programming model called the Actor-Reactor Model in which programs are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of imperative and reactive code, and they can be composed via a number of composition operators that make use of data streams. We demonstrate the model via our own implementation in a language called Stella.

Cite as

Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter. Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model. In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 166, pp. 19:1-19:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{vandenvonder_et_al:LIPIcs.ECOOP.2020.19,
  author =	{Van den Vonder, Sam and Renaux, Thierry and Oeyen, Bjarno and De Koster, Joeri and De Meuter, Wolfgang},
  title =	{{Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model}},
  booktitle =	{34th European Conference on Object-Oriented Programming (ECOOP 2020)},
  pages =	{19:1--19:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-154-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{166},
  editor =	{Hirschfeld, Robert and Pape, Tobias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.19},
  URN =		{urn:nbn:de:0030-drops-131768},
  doi =		{10.4230/LIPIcs.ECOOP.2020.19},
  annote =	{Keywords: functional reactive programming, reactive programming, reactive streams, actors, reactors}
}
Document
Proof Pearl: Purely Functional, Simple and Efficient Priority Search Trees and Applications to Prim and Dijkstra

Authors: Peter Lammich and Tobias Nipkow

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
The starting point of this paper is a new, purely functional, simple and efficient data structure combining a search tree and a priority queue, which we call a priority search tree. The salient feature of priority search trees is that they offer a decrease-key operation, something that is missing from other simple, purely functional priority queue implementations. As two applications of this data structure we verify purely functional, simple and efficient implementations of Prim’s and Dijkstra’s algorithms. This constitutes the first verification of an executable and even efficient version of Prim’s algorithm.

Cite as

Peter Lammich and Tobias Nipkow. Proof Pearl: Purely Functional, Simple and Efficient Priority Search Trees and Applications to Prim and Dijkstra. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lammich_et_al:LIPIcs.ITP.2019.23,
  author =	{Lammich, Peter and Nipkow, Tobias},
  title =	{{Proof Pearl: Purely Functional, Simple and Efficient Priority Search Trees and Applications to Prim and Dijkstra}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.23},
  URN =		{urn:nbn:de:0030-drops-110788},
  doi =		{10.4230/LIPIcs.ITP.2019.23},
  annote =	{Keywords: Priority queue, Dijkstra’s algorithm, Prim’s algorithm, verification, Isabelle}
}
Document
Topological Data Analysis Reveals Principles of Chromosome Structure in Cellular Differentiation

Authors: Natalie Sauerwald, Yihang Shen, and Carl Kingsford

Published in: LIPIcs, Volume 143, 19th International Workshop on Algorithms in Bioinformatics (WABI 2019)


Abstract
Topological data analysis (TDA) is a mathematically well-founded set of methods to derive robust information about the structure and topology of data. It has been applied successfully in several biological contexts. Derived primarily from algebraic topology, TDA rigorously identifies persistent features in complex data, making it well-suited to better understand the key features of three-dimensional chromosome structure. Chromosome structure has a significant influence in many diverse genomic processes and has recently been shown to relate to cellular differentiation. While there exist many methods to study specific substructures of chromosomes, we are still missing a global view of all geometric features of chromosomes. By applying TDA to the study of chromosome structure through differentiation across three cell lines, we provide insight into principles of chromosome folding and looping. We identify persistent connected components and one-dimensional topological features of chromosomes and characterize them across cell types and stages of differentiation. Availability: Scripts to reproduce the results from this study can be found at https://github.com/Kingsford-Group/hictda

Cite as

Natalie Sauerwald, Yihang Shen, and Carl Kingsford. Topological Data Analysis Reveals Principles of Chromosome Structure in Cellular Differentiation. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sauerwald_et_al:LIPIcs.WABI.2019.23,
  author =	{Sauerwald, Natalie and Shen, Yihang and Kingsford, Carl},
  title =	{{Topological Data Analysis Reveals Principles of Chromosome Structure in Cellular Differentiation}},
  booktitle =	{19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-123-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{143},
  editor =	{Huber, Katharina T. and Gusfield, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2019.23},
  URN =		{urn:nbn:de:0030-drops-110537},
  doi =		{10.4230/LIPIcs.WABI.2019.23},
  annote =	{Keywords: topological data analysis, chromosome structure, Hi-C, topologically associating domains}
}
Document
New Pumping Technique for 2-Dimensional VASS

Authors: Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We propose a new pumping technique for 2-dimensional vector addition systems with states (2-VASS) building on natural geometric properties of runs. We illustrate its applicability by reproving an exponential bound on the length of the shortest accepting run, and by proving a new pumping lemma for languages of 2-VASS. The technique is expected to be useful for settling questions concerning languages of 2-VASS, e.g., for establishing decidability status of the regular separability problem.

Cite as

Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski. New Pumping Technique for 2-Dimensional VASS. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.MFCS.2019.62,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and L\"{o}ding, Christof and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{New Pumping Technique for 2-Dimensional VASS}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{62:1--62:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.62},
  URN =		{urn:nbn:de:0030-drops-110066},
  doi =		{10.4230/LIPIcs.MFCS.2019.62},
  annote =	{Keywords: vector addition systems with states, pumping, decidability}
}
Document
Reducing the Domination Number of Graphs via Edge Contractions

Authors: Esther Galby, Paloma T. Lima, and Bernard Ries

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
In this paper, we study the following problem: given a connected graph G, can we reduce the domination number of G by at least one using k edge contractions, for some fixed integer k >= 0? We show that for k <= 2, the problem is coNP-hard. We further prove that for k=1, the problem is W[1]-hard parameterized by the size of a minimum dominating set plus the mim-width of the input graph, and that it remains NP-hard when restricted to P_9-free graphs, bipartite graphs and {C_3,...,C_{l}}-free graphs for any l >= 3. Finally, we show that for any k >= 1, the problem is polynomial-time solvable for P_5-free graphs and that it can be solved in FPT-time and XP-time when parameterized by tree-width and mim-width, respectively.

Cite as

Esther Galby, Paloma T. Lima, and Bernard Ries. Reducing the Domination Number of Graphs via Edge Contractions. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 41:1-41:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{galby_et_al:LIPIcs.MFCS.2019.41,
  author =	{Galby, Esther and Lima, Paloma T. and Ries, Bernard},
  title =	{{Reducing the Domination Number of Graphs via Edge Contractions}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{41:1--41:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.41},
  URN =		{urn:nbn:de:0030-drops-109856},
  doi =		{10.4230/LIPIcs.MFCS.2019.41},
  annote =	{Keywords: domination number, blocker problem, graph classes}
}
Document
Long-Run Average Behavior of Vector Addition Systems with States

Authors: Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open.

Cite as

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Long-Run Average Behavior of Vector Addition Systems with States. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CONCUR.2019.27,
  author =	{Chatterjee, Krishnendu and Henzinger, Thomas A. and Otop, Jan},
  title =	{{Long-Run Average Behavior of Vector Addition Systems with States}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.27},
  URN =		{urn:nbn:de:0030-drops-109293},
  doi =		{10.4230/LIPIcs.CONCUR.2019.27},
  annote =	{Keywords: vector addition systems, mean-payoff, Diophantine inequalities}
}
Document
Invited Talk
Petri Net Reachability Problem (Invited Talk)

Authors: Jérôme Leroux

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. In this presentation, we overview decidability and complexity results over the last fifty years about the Petri net reachability problem.

Cite as

Jérôme Leroux. Petri Net Reachability Problem (Invited Talk). In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 5:1-5:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{leroux:LIPIcs.MFCS.2019.5,
  author =	{Leroux, J\'{e}r\^{o}me},
  title =	{{Petri Net Reachability Problem}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{5:1--5:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.5},
  URN =		{urn:nbn:de:0030-drops-109493},
  doi =		{10.4230/LIPIcs.MFCS.2019.5},
  annote =	{Keywords: Petri net, Reachability problem, Formal verification, Concurrency}
}
Document
Enumeration of Preferred Extensions in Almost Oriented Digraphs

Authors: Serge Gaspers and Ray Li

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
In this paper, we present enumeration algorithms to list all preferred extensions of an argumentation framework. This task is equivalent to enumerating all maximal semikernels of a directed graph. For directed graphs on n vertices, all preferred extensions can be enumerated in O^*(3^{n/3}) time and there are directed graphs with Omega(3^{n/3}) preferred extensions. We give faster enumeration algorithms for directed graphs with at most 0.8004 * n vertices occurring in 2-cycles. In particular, for oriented graphs (digraphs with no 2-cycles) one of our algorithms runs in time O(1.2321^n), and we show that there are oriented graphs with Omega(3^{n/6}) > Omega(1.2009^n) preferred extensions. A combination of three algorithms leads to the fastest enumeration times for various proportions of the number of vertices in 2-cycles. The most innovative one is a new 2-stage sampling algorithm, combined with a new parameterized enumeration algorithm, analyzed with a combination of the recent monotone local search technique (STOC 2016) and an extension thereof (ICALP 2017).

Cite as

Serge Gaspers and Ray Li. Enumeration of Preferred Extensions in Almost Oriented Digraphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 74:1-74:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.MFCS.2019.74,
  author =	{Gaspers, Serge and Li, Ray},
  title =	{{Enumeration of Preferred Extensions in Almost Oriented Digraphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{74:1--74:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.74},
  URN =		{urn:nbn:de:0030-drops-110188},
  doi =		{10.4230/LIPIcs.MFCS.2019.74},
  annote =	{Keywords: abstract argumentation, exact algorithms, exponential time algorithms, parameterized algorithms, enumeration algorithms, semikernels in digraphs}
}
Document
Domain-Aware Session Types

Authors: Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We develop a generalization of existing Curry-Howard interpretations of (binary) session types by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds that indicate domains. These worlds govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed process framework for domain-aware, message-passing concurrency. Its logical foundations ensure that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures that processes only communicate with accessible domains and so respect the accessibility relation. Remarkably, our domain-aware framework can specify scenarios in which domain information is available only at runtime; flexible accessibility relations can be cleanly defined and statically enforced. As a specific application, we introduce domain-aware multiparty session types, in which global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a precise analysis of these multiparty protocols by reduction to our binary domain-aware framework: complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring also the principled transfer of key correctness properties from the binary to the multiparty setting.

Cite as

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session Types. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{caires_et_al:LIPIcs.CONCUR.2019.39,
  author =	{Caires, Lu{\'\i}s and P\'{e}rez, Jorge A. and Pfenning, Frank and Toninho, Bernardo},
  title =	{{Domain-Aware Session Types}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.39},
  URN =		{urn:nbn:de:0030-drops-109417},
  doi =		{10.4230/LIPIcs.CONCUR.2019.39},
  annote =	{Keywords: Session Types, Linear Logic, Process Calculi, Hybrid Logic}
}
Document
Brave New Idea Paper
Motion Session Types for Robotic Interactions (Brave New Idea Paper)

Authors: Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Robotics applications involve programming concurrent components synchronising through messages while simultaneously executing motion primitives that control the state of the physical world. Today, these applications are typically programmed in low-level imperative programming languages which provide little support for abstraction or reasoning. We present a unifying programming model for concurrent message-passing systems that additionally control the evolution of physical state variables, together with a compositional reasoning framework based on multiparty session types. Our programming model combines message-passing concurrent processes with motion primitives. Processes represent autonomous components in a robotic assembly, such as a cart or a robotic arm, and they synchronise via discrete messages as well as via motion primitives. Continuous evolution of trajectories under the action of controllers is also modelled by motion primitives, which operate in global, physical time. We use multiparty session types as specifications to orchestrate discrete message-passing concurrency and continuous flow of trajectories. A global session type specifies the communication protocol among the components with joint motion primitives. A projection from a global type ensures that jointly executed actions at end-points are communication safe and deadlock-free, i.e., session-typed components do not get stuck. Together, these checks provide a compositional verification methodology for assemblies of robotic components with respect to concurrency invariants such as a progress property of communications as well as dynamic invariants such as absence of collision. We have implemented our core language and, through initial experiments, have shown how multiparty session types can be used to specify and compositionally verify robotic systems implemented on top of off-the-shelf and custom hardware using standard robotics application libraries.

Cite as

Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion Session Types for Robotic Interactions (Brave New Idea Paper). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 28:1-28:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{majumdar_et_al:LIPIcs.ECOOP.2019.28,
  author =	{Majumdar, Rupak and Pirron, Marcus and Yoshida, Nobuko and Zufferey, Damien},
  title =	{{Motion Session Types for Robotic Interactions}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{28:1--28:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.28},
  URN =		{urn:nbn:de:0030-drops-108205},
  doi =		{10.4230/LIPIcs.ECOOP.2019.28},
  annote =	{Keywords: Session Types, Robotics, Concurrent Programming, Motions, Communications, Multiparty Session Types, Deadlock Freedom}
}
Document
A Program Logic for First-Order Encapsulated WebAssembly

Authors: Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and Philippa Gardner

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
We introduce Wasm Logic, a sound program logic for first-order, encapsulated WebAssembly. We design a novel assertion syntax, tailored to WebAssembly’s stack-based semantics and the strong guarantees given by WebAssembly’s type system, and show how to adapt the standard separation logic triple and proof rules in a principled way to capture WebAssembly’s uncommon structured control flow. Using Wasm Logic, we specify and verify a simple WebAssembly B-tree library, giving abstract specifications independent of the underlying implementation. We mechanise Wasm Logic and its soundness proof in full in Isabelle/HOL. As part of the soundness proof, we formalise and fully mechanise a novel, big-step semantics of WebAssembly, which we prove equivalent, up to transitive closure, to the original WebAssembly small-step semantics. Wasm Logic is the first program logic for WebAssembly, and represents a first step towards the creation of static analysis tools for WebAssembly.

Cite as

Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and Philippa Gardner. A Program Logic for First-Order Encapsulated WebAssembly. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 9:1-9:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{watt_et_al:LIPIcs.ECOOP.2019.9,
  author =	{Watt, Conrad and Maksimovi\'{c}, Petar and Krishnaswami, Neelakantan R. and Gardner, Philippa},
  title =	{{A Program Logic for First-Order Encapsulated WebAssembly}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{9:1--9:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.9},
  URN =		{urn:nbn:de:0030-drops-108011},
  doi =		{10.4230/LIPIcs.ECOOP.2019.9},
  annote =	{Keywords: WebAssembly, program logic, separation logic, soundness, mechanisation}
}
Document
Enumerating Minimal Dominating Sets in Triangle-Free Graphs

Authors: Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
It is a long-standing open problem whether the minimal dominating sets of a graph can be enumerated in output-polynomial time. In this paper we prove that this is the case in triangle-free graphs. This answers a question of Kanté et al. Additionally, we show that deciding if a set of vertices of a bipartite graph can be completed into a minimal dominating set is a NP-complete problem.

Cite as

Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond. Enumerating Minimal Dominating Sets in Triangle-Free Graphs. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 16:1-16:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonamy_et_al:LIPIcs.STACS.2019.16,
  author =	{Bonamy, Marthe and Defrain, Oscar and Heinrich, Marc and Raymond, Jean-Florent},
  title =	{{Enumerating Minimal Dominating Sets in Triangle-Free Graphs}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{16:1--16:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.16},
  URN =		{urn:nbn:de:0030-drops-102557},
  doi =		{10.4230/LIPIcs.STACS.2019.16},
  annote =	{Keywords: Enumeration algorithms, output-polynomial algorithms, minimal dominating set, triangle-free graphs, split graphs}
}
Document
Lean Tree-Cut Decompositions: Obstructions and Algorithms

Authors: Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
The notion of tree-cut width has been introduced by Wollan in [The structure of graphs not admitting a fixed immersion, Journal of Combinatorial Theory, Series B, 110:47 - 66, 2015]. It is defined via tree-cut decompositions, which are tree-like decompositions that highlight small (edge) cuts in a graph. In that sense, tree-cut decompositions can be seen as an edge-version of tree-decompositions and have algorithmic applications on problems that remain intractable on graphs of bounded treewidth. In this paper, we prove that every graph admits an optimal tree-cut decomposition that satisfies a certain Menger-like condition similar to that of the lean tree decompositions of Thomas [A Menger-like property of tree-width: The finite case, Journal of Combinatorial Theory, Series B, 48(1):67 - 76, 1990]. This allows us to give, for every k in N, an upper-bound on the number immersion-minimal graphs of tree-cut width k. Our results imply the constructive existence of a linear FPT-algorithm for tree-cut width.

Cite as

Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos. Lean Tree-Cut Decompositions: Obstructions and Algorithms. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 32:1-32:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{giannopoulou_et_al:LIPIcs.STACS.2019.32,
  author =	{Giannopoulou, Archontia C. and Kwon, O-joung and Raymond, Jean-Florent and Thilikos, Dimitrios M.},
  title =	{{Lean Tree-Cut Decompositions: Obstructions and Algorithms}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.32},
  URN =		{urn:nbn:de:0030-drops-102716},
  doi =		{10.4230/LIPIcs.STACS.2019.32},
  annote =	{Keywords: tree-cut width, lean decompositions, immersions, obstructions, parameterized algorithms}
}
Document
On the Tractability of Optimization Problems on H-Graphs

Authors: Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
For a graph H, a graph G is an H-graph if it is an intersection graph of connected subgraphs of some subdivision of H. These graphs naturally generalize several important graph classes like interval graphs or circular-arc graph. This notion was introduced in the early 1990s by Biro, Hujter, and Tuza. Recently, Chaplick et al. initiated the algorithmic study of H-graphs by showing that a number of fundamental optimization problems like Clique, Independent Set, or Dominating Set are solvable in polynomial time on H-graphs. We extend and complement these algorithmic findings in several directions. First we show that for every fixed H, the class of H-graphs is of logarithmically-bounded boolean-width. We also prove that H-graphs are graphs with polynomially many minimal separators. Pipelined with the plethora of known algorithms on graphs of bounded boolean-width and graphs with polynomially many minimal separators, this describes a large class of optimization problems that are solvable in polynomial time on H-graphs. The most fundamental optimization problems among those solvable in polynomial time on H-graphs are Clique, Independent Set, and Dominating Set. We provide a more refined complexity analysis of these problems from the perspective of parameterized complexity. We show that Independent Set and Dominating Set are W[1]-hard being parameterized by the size of H plus the size of the solution. On the other hand, we prove that when H is a tree, Dominating Set is fixed-parameter tractable (FPT) parameterized by the size of H. Besides, we show that Clique admits a polynomial kernel parameterized by H and the solution size.

Cite as

Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the Tractability of Optimization Problems on H-Graphs. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 30:1-30:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2018.30,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Raymond, Jean-Florent},
  title =	{{On the Tractability of Optimization Problems on H-Graphs}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{30:1--30:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.30},
  URN =		{urn:nbn:de:0030-drops-94930},
  doi =		{10.4230/LIPIcs.ESA.2018.30},
  annote =	{Keywords: H-topological intersection graphs, parameterized complexity, minimal separators, boolean-width, mim-width}
}
  • Refine by Author
  • 5 Raymond, Jean-Florent
  • 4 Abrial, Jean-Raymond
  • 3 Giannopoulou, Archontia C.
  • 3 Thilikos, Dimitrios M.
  • 2 Glässer, Uwe
  • Show More...

  • Refine by Classification
  • 3 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Fixed parameter tractability
  • 2 Theory of computation → Process calculi
  • 1 Applied computing
  • Show More...

  • Refine by Keyword
  • 2 Abstract State Machines
  • 2 Session Types
  • 2 immersions
  • 2 obstructions
  • 2 parameterized algorithms
  • Show More...

  • Refine by Type
  • 26 document

  • Refine by Publication Year
  • 12 2019
  • 4 2006
  • 2 2015
  • 2 2017
  • 1 1995
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail