9 Search Results for "Schulz, André"


Document
On the Geometric Thickness of 2-Degenerate Graphs

Authors: Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every 2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is, there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3. This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].

Cite as

Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz. On the Geometric Thickness of 2-Degenerate Graphs. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 44:1-44:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.SoCG.2023.44,
  author =	{Jain, Rahul and Ricci, Marco and Rollin, Jonathan and Schulz, Andr\'{e}},
  title =	{{On the Geometric Thickness of 2-Degenerate Graphs}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.44},
  URN =		{urn:nbn:de:0030-drops-178946},
  doi =		{10.4230/LIPIcs.SoCG.2023.44},
  annote =	{Keywords: Degeneracy, geometric thickness, geometric arboricity}
}
Document
Applying a Cut-Based Data Reduction Rule for Weighted Cluster Editing in Polynomial Time

Authors: Hjalmar Schulz, André Nichterlein, Rolf Niedermeier, and Christopher Weyand

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
Given an undirected graph, the task in Cluster Editing is to insert and delete a minimum number of edges to obtain a cluster graph, that is, a disjoint union of cliques. In the weighted variant each vertex pair comes with a weight and the edge modifications have to be of minimum overall weight. In this work, we provide the first polynomial-time algorithm to apply the following data reduction rule of Böcker et al. [Algorithmica, 2011] for Weighted Cluster Editing: For a graph G = (V,E), merge a vertex set S ⊆ V into a single vertex if the minimum cut of G[S] is at least the combined cost of inserting all missing edges within G[S] plus the cost of cutting all edges from S to the rest of the graph. Complementing our theoretical findings, we experimentally demonstrate the effectiveness of the data reduction rule, shrinking real-world test instances from the PACE Challenge 2021 by around 24% while previous heuristic implementations of the data reduction rule only achieve 8%.

Cite as

Hjalmar Schulz, André Nichterlein, Rolf Niedermeier, and Christopher Weyand. Applying a Cut-Based Data Reduction Rule for Weighted Cluster Editing in Polynomial Time. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 25:1-25:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{schulz_et_al:LIPIcs.IPEC.2022.25,
  author =	{Schulz, Hjalmar and Nichterlein, Andr\'{e} and Niedermeier, Rolf and Weyand, Christopher},
  title =	{{Applying a Cut-Based Data Reduction Rule for Weighted Cluster Editing in Polynomial Time}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.25},
  URN =		{urn:nbn:de:0030-drops-173816},
  doi =		{10.4230/LIPIcs.IPEC.2022.25},
  annote =	{Keywords: Correlation Clustering, Minimum Cut, Maximum s-t-Flow}
}
Document
Adjacency Graphs of Polyhedral Surfaces

Authors: Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, and Alexander Wolff

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in ℝ³. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains K_5, K_{5,81}, or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, K_{4,4}, and K_{3,5} can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n-vertex graphs is in Ω(n log n). From the non-realizability of K_{5,81}, we obtain that any realizable n-vertex graph has 𝒪(n^{9/5}) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.

Cite as

Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, and Alexander Wolff. Adjacency Graphs of Polyhedral Surfaces. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 11:1-11:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arseneva_et_al:LIPIcs.SoCG.2021.11,
  author =	{Arseneva, Elena and Kleist, Linda and Klemz, Boris and L\"{o}ffler, Maarten and Schulz, Andr\'{e} and Vogtenhuber, Birgit and Wolff, Alexander},
  title =	{{Adjacency Graphs of Polyhedral Surfaces}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.11},
  URN =		{urn:nbn:de:0030-drops-138107},
  doi =		{10.4230/LIPIcs.SoCG.2021.11},
  annote =	{Keywords: polyhedral complexes, realizability, contact representation}
}
Document
Drawing Graphs with Circular Arcs and Right-Angle Crossings

Authors: Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
In a RAC drawing of a graph, vertices are represented by points in the plane, adjacent vertices are connected by line segments, and crossings must form right angles. Graphs that admit such drawings are RAC graphs. RAC graphs are beyond-planar graphs and have been studied extensively. In particular, it is known that a RAC graph with n vertices has at most 4n-10 edges. We introduce a superclass of RAC graphs, which we call arc-RAC graphs. A graph is arc-RAC if it admits a drawing where edges are represented by circular arcs and crossings form right angles. We provide a Turán-type result showing that an arc-RAC graph with n vertices has at most 14n-12 edges and that there are n-vertex arc-RAC graphs with 4.5n - O(√n) edges.

Cite as

Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff. Drawing Graphs with Circular Arcs and Right-Angle Crossings. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chaplick_et_al:LIPIcs.SWAT.2020.21,
  author =	{Chaplick, Steven and F\"{o}rster, Henry and Kryven, Myroslav and Wolff, Alexander},
  title =	{{Drawing Graphs with Circular Arcs and Right-Angle Crossings}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{21:1--21:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.21},
  URN =		{urn:nbn:de:0030-drops-122687},
  doi =		{10.4230/LIPIcs.SWAT.2020.21},
  annote =	{Keywords: circular arcs, right-angle crossings, edge density, charging argument}
}
Document
Recognizing Planar Laman Graphs

Authors: Jonathan Rollin, Lena Schlipf, and André Schulz

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing planar Laman graphs. A simple algorithm with running time O(n^(3/2)) and a more complicated algorithm with running time O(n log^3 n) based on involved planar network flow algorithms. Both improve upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-6):465 - 497, 1992] with running time O(n sqrt{n log n}). To solve this problem we introduce two algorithms (with the running times stated above) that check whether for a directed planar graph G, disjoint sets S, T subseteq V(G), and a fixed k the following connectivity condition holds: for each vertex s in S there are k directed paths from s to T pairwise having only vertex s in common. This variant of connectivity seems interesting on its own.

Cite as

Jonathan Rollin, Lena Schlipf, and André Schulz. Recognizing Planar Laman Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 79:1-79:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rollin_et_al:LIPIcs.ESA.2019.79,
  author =	{Rollin, Jonathan and Schlipf, Lena and Schulz, Andr\'{e}},
  title =	{{Recognizing Planar Laman Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{79:1--79:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.79},
  URN =		{urn:nbn:de:0030-drops-112001},
  doi =		{10.4230/LIPIcs.ESA.2019.79},
  annote =	{Keywords: planar graphs, Laman graphs, network flow, connectivity}
}
Document
Multimedia Exposition
Fréchet View - A Tool for Exploring Fréchet Distance Algorithms (Multimedia Exposition)

Authors: Peter Schäfer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
The Fréchet-distance is a similarity measure for geometric shapes. Alt and Godau presented the first algorithm for computing the Fréchet-distance and introduced a key concept, the free-space diagram. Since then, numerous variants of the Fréchet-distance have been studied. We present here an interactive, graphical tool for exploring some Fréchet-distance algorithms. Given two curves, users can experiment with the free-space diagram and compute the Fréchet-distance. The Fréchet-distance can be computed for two important classes of shapes: for polygonal curves in the plane, and for simple polygonal surfaces. Finally, we demonstrate an implementation of a very recent concept, the k-Fréchet-distance.

Cite as

Peter Schäfer. Fréchet View - A Tool for Exploring Fréchet Distance Algorithms (Multimedia Exposition). In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 66:1-66:5, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{schafer:LIPIcs.SoCG.2019.66,
  author =	{Sch\"{a}fer, Peter},
  title =	{{Fr\'{e}chet View - A Tool for Exploring Fr\'{e}chet Distance Algorithms}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{66:1--66:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.66},
  URN =		{urn:nbn:de:0030-drops-104703},
  doi =		{10.4230/LIPIcs.SoCG.2019.66},
  annote =	{Keywords: Fr\'{e}chet distance, free-space diagram, polygonal curves, simple polygons}
}
Document
Space-efficient Basic Graph Algorithms

Authors: Amr Elmasry, Torben Hagerup, and Frank Kammer

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
We reconsider basic algorithmic graph problems in a setting where an n-vertex input graph is read-only and the computation must take place in a working memory of O(n) bits or little more than that. For computing connected components and performing breadth-first search, we match the running times of standard algorithms that have no memory restrictions, for depth-first search and related problems we come within a factor of \Theta(\log\log n), and for computing minimum spanning forests and single-source shortest-paths trees we come close for sparse input graphs.

Cite as

Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient Basic Graph Algorithms. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 288-301, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{elmasry_et_al:LIPIcs.STACS.2015.288,
  author =	{Elmasry, Amr and Hagerup, Torben and Kammer, Frank},
  title =	{{Space-efficient Basic Graph Algorithms}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{288--301},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.288},
  URN =		{urn:nbn:de:0030-drops-49217},
  doi =		{10.4230/LIPIcs.STACS.2015.288},
  annote =	{Keywords: graph algorithms, depth-first search, single-source shortest paths, register input model}
}
Document
Algorithms for Designing Pop-Up Cards

Authors: Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, André Schulz, Diane L. Souvaine, Giovanni Viglietta, and Andrew Winslow

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We prove that every simple polygon can be made as a (2D) pop-up card/book that opens to any desired angle between 0 and 360°. More precisely, given a simple polygon attached to the two walls of the open pop-up, our polynomial-time algorithm subdivides the polygon into a single-degree-of-freedom linkage structure, such that closing the pop-up flattens the linkage without collision. This result solves an open problem of Hara and Sugihara from 2009. We also show how to obtain a more efficient construction for the special case of orthogonal polygons, and how to make 3D orthogonal polyhedra, from pop-ups that open to 90°, 180°, 270°, or 360°.

Cite as

Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, André Schulz, Diane L. Souvaine, Giovanni Viglietta, and Andrew Winslow. Algorithms for Designing Pop-Up Cards. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 269-280, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{abel_et_al:LIPIcs.STACS.2013.269,
  author =	{Abel, Zachary and Demaine, Erik D. and Demaine, Martin L. and Eisenstat, Sarah and Lubiw, Anna and Schulz, Andr\'{e} and Souvaine, Diane L. and Viglietta, Giovanni and Winslow, Andrew},
  title =	{{Algorithms for Designing Pop-Up Cards}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{269--280},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.269},
  URN =		{urn:nbn:de:0030-drops-39407},
  doi =		{10.4230/LIPIcs.STACS.2013.269},
  annote =	{Keywords: geometric folding, linkages, universality}
}
Document
Bounds on the maximum multiplicity of some common geometric graphs

Authors: Adrian Dumitrescu, Andre Schulz, Adam Sheffer, and Csaba D. Toth

Published in: LIPIcs, Volume 9, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)


Abstract
We obtain new lower and upper bounds for the maximum multiplicity of some weighted, and respectively non-weighted, common geometric graphs drawn on $n$ points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of $n$ points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits Omega (8.65^n) different triangulations. This improves the bound Omega (8.48^n) achieved by the previous best construction, the double zig-zag chain studied by Aichholzer et al. (ii) We present a new lower bound of Omega(11.97^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, Omega(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.664^n) non-crossing spanning cycles. (iv) We derive exponential lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). It was known that the number of longest non-crossing spanning trees of a point set can be exponentially large, and here we show that this can be also realized with points in convex position. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(n log n) time algorithm for computing them.

Cite as

Adrian Dumitrescu, Andre Schulz, Adam Sheffer, and Csaba D. Toth. Bounds on the maximum multiplicity of some common geometric graphs. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 637-648, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{dumitrescu_et_al:LIPIcs.STACS.2011.637,
  author =	{Dumitrescu, Adrian and Schulz, Andre and Sheffer, Adam and Toth, Csaba D.},
  title =	{{Bounds on the maximum multiplicity of some common geometric graphs}},
  booktitle =	{28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)},
  pages =	{637--648},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-25-5},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{9},
  editor =	{Schwentick, Thomas and D\"{u}rr, Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2011.637},
  URN =		{urn:nbn:de:0030-drops-30505},
  doi =		{10.4230/LIPIcs.STACS.2011.637},
  annote =	{Keywords: combinatorial geometry, matching, triangulation, spanning tree, spanning cycle, weighted structure, non-crossing condition}
}
  • Refine by Author
  • 4 Schulz, André
  • 2 Rollin, Jonathan
  • 2 Wolff, Alexander
  • 1 Abel, Zachary
  • 1 Arseneva, Elena
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Combinatoric problems
  • 2 Mathematics of computing → Graphs and surfaces
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Graph theory
  • 1 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 1 Correlation Clustering
  • 1 Degeneracy
  • 1 Fréchet distance
  • 1 Laman graphs
  • 1 Maximum s-t-Flow
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 2 2019
  • 1 2011
  • 1 2013
  • 1 2015
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail