Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak. A Solution to Ringel’s Circle Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{davies_et_al:LIPIcs.SoCG.2022.33, author = {Davies, James and Keller, Chaya and Kleist, Linda and Smorodinsky, Shakhar and Walczak, Bartosz}, title = {{A Solution to Ringel’s Circle Problem}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {33:1--33:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.33}, URN = {urn:nbn:de:0030-drops-160413}, doi = {10.4230/LIPIcs.SoCG.2022.33}, annote = {Keywords: circle arrangement, chromatic number, Gallai’s theorem, polynomial method} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and Yelena Yuditsky. The ε-t-Net Problem. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{alon_et_al:LIPIcs.SoCG.2020.5, author = {Alon, Noga and Jartoux, Bruno and Keller, Chaya and Smorodinsky, Shakhar and Yuditsky, Yelena}, title = {{The \epsilon-t-Net Problem}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {5:1--5:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.5}, URN = {urn:nbn:de:0030-drops-121639}, doi = {10.4230/LIPIcs.SoCG.2020.5}, annote = {Keywords: epsilon-nets, geometric hypergraphs, VC-dimension, linear union complexity} }
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
A. Karim Abu-Affash, Paz Carmi, Anil Maheshwari, Pat Morin, Michiel Smid, and Shakhar Smorodinsky. Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{abuaffash_et_al:LIPIcs.SoCG.2018.2, author = {Abu-Affash, A. Karim and Carmi, Paz and Maheshwari, Anil and Morin, Pat and Smid, Michiel and Smorodinsky, Shakhar}, title = {{Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {2:1--2:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.2}, URN = {urn:nbn:de:0030-drops-87152}, doi = {10.4230/LIPIcs.SoCG.2018.2}, annote = {Keywords: Approximation algorithms, maximum diameter-bounded subgraph, unit disk graphs, fractional Helly theorem, VC-dimension} }
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
Chaya Keller and Shakhar Smorodinsky. From a (p,2)-Theorem to a Tight (p,q)-Theorem. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 51:1-51:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{keller_et_al:LIPIcs.SoCG.2018.51, author = {Keller, Chaya and Smorodinsky, Shakhar}, title = {{From a (p,2)-Theorem to a Tight (p,q)-Theorem}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {51:1--51:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.51}, URN = {urn:nbn:de:0030-drops-87640}, doi = {10.4230/LIPIcs.SoCG.2018.51}, annote = {Keywords: (p,q)-Theorem, convexity, transversals, (p,2)-theorem, axis-parallel rectangles} }
Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)
Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, and Shakhar Smorodinsky. On Interference Among Moving Sensors and Related Problems. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{decarufel_et_al:LIPIcs.ESA.2016.34, author = {De Carufel, Jean-Lou and Katz, Matthew J. and Korman, Matias and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Smorodinsky, Shakhar}, title = {{On Interference Among Moving Sensors and Related Problems}}, booktitle = {24th Annual European Symposium on Algorithms (ESA 2016)}, pages = {34:1--34:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-015-6}, ISSN = {1868-8969}, year = {2016}, volume = {57}, editor = {Sankowski, Piotr and Zaroliagis, Christos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.34}, URN = {urn:nbn:de:0030-drops-63850}, doi = {10.4230/LIPIcs.ESA.2016.34}, annote = {Keywords: Range spaces, Voronoi diagrams, moving points, facility location, interference minimization} }
Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)
Alexandre Rok and Shakhar Smorodinsky. Weak 1/r-Nets for Moving Points. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 59:1-59:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{rok_et_al:LIPIcs.SoCG.2016.59, author = {Rok, Alexandre and Smorodinsky, Shakhar}, title = {{Weak 1/r-Nets for Moving Points}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {59:1--59:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.59}, URN = {urn:nbn:de:0030-drops-59514}, doi = {10.4230/LIPIcs.SoCG.2016.59}, annote = {Keywords: Hypergraphs, Weak epsilon-net} }
Feedback for Dagstuhl Publishing