12 Search Results for "Stamoulis, Giannos"


Document
Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs

Authors: Daniel Hambly, Rhyd Lewis, and Padraig Corcoran

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In this paper, we examine the NP-hard problem of identifying fixed-length s-t paths in edge-weighted graphs - that is, a path of a desired length k from a source vertex s to a target vertex t. Many existing strategies look at paths whose lengths are determined by the number of edges in the path. We, however, look at the length of the path as the sum of the edge weights. Here, three exact algorithms for this problem are proposed: the first based on an integer programming (IP) formulation, the second a backtracking algorithm, and the third based on an extension of Yen’s algorithm. Analysis of these algorithms on random graphs shows that the backtracking algorithm performs best on smaller values of k, whilst the IP is preferable for larger values of k.

Cite as

Daniel Hambly, Rhyd Lewis, and Padraig Corcoran. Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 15:1-15:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hambly_et_al:LIPIcs.SEA.2024.15,
  author =	{Hambly, Daniel and Lewis, Rhyd and Corcoran, Padraig},
  title =	{{Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{15:1--15:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.15},
  URN =		{urn:nbn:de:0030-drops-203805},
  doi =		{10.4230/LIPIcs.SEA.2024.15},
  annote =	{Keywords: Graphs, paths, backtracking, integer programming, Yen’s algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Detecting Disjoint Shortest Paths in Linear Time and More

Authors: Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants. Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs). We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs. Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋. Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6.

Cite as

Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein. Detecting Disjoint Shortest Paths in Linear Time and More. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{akmal_et_al:LIPIcs.ICALP.2024.9,
  author =	{Akmal, Shyan and Vassilevska Williams, Virginia and Wein, Nicole},
  title =	{{Detecting Disjoint Shortest Paths in Linear Time and More}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.9},
  URN =		{urn:nbn:de:0030-drops-201529},
  doi =		{10.4230/LIPIcs.ICALP.2024.9},
  annote =	{Keywords: disjoint shortest paths, algebraic graph algorithms, disjoint paths, fine-grained complexity, clique}
}
Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations

Authors: Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For a fixed graph H, the H-Subgraph Hitting problem consists in deleting the minimum number of vertices from an input graph to obtain a graph without any occurrence of H as a subgraph. This problem can be seen as a generalization of Vertex Cover, which corresponds to the case H = K₂. We initiate a study of H-Subgraph Hitting from the point of view of characterizing structural parameterizations that allow for polynomial kernels, within the recently active framework of taking as the parameter the number of vertex deletions to obtain a graph in a "simple" class 𝒞. Our main contribution is to identify graph parameters that, when H-Subgraph Hitting is parameterized by the vertex-deletion distance to a class 𝒞 where any of these parameters is bounded, and assuming standard complexity assumptions and that H is biconnected, allow us to prove the following sharp dichotomy: the problem admits a polynomial kernel if and only if H is a clique. These new graph parameters are inspired by the notion of 𝒞-elimination distance introduced by Bulian and Dawar [Algorithmica 2016], and generalize it in two directions. Our results also apply to the version of the problem where one wants to hit H as an induced subgraph, and imply in particular, that the problems of hitting minors and hitting (induced) subgraphs have a substantially different behavior with respect to the existence of polynomial kernels under structural parameterizations.

Cite as

Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bougeret_et_al:LIPIcs.ICALP.2024.33,
  author =	{Bougeret, Marin and Jansen, Bart M. P. and Sau, Ignasi},
  title =	{{Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.33},
  URN =		{urn:nbn:de:0030-drops-201766},
  doi =		{10.4230/LIPIcs.ICALP.2024.33},
  annote =	{Keywords: hitting subgraphs, hitting induced subgraphs, parameterized complexity, polynomial kernel, complexity dichotomy, elimination distance}
}
Document
Track A: Algorithms, Complexity and Games
Lower Bounds for Matroid Optimization Problems with a Linear Constraint

Authors: Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study a family of matroid optimization problems with a linear constraint (MOL). In these problems, we seek a subset of elements which optimizes (i.e., maximizes or minimizes) a linear objective function subject to (i) a matroid independent set, or a matroid basis constraint, (ii) additional linear constraint. A notable member in this family is budgeted matroid independent set (BM), which can be viewed as classic 0/1-Knapsack with a matroid constraint. While special cases of BM, such as knapsack with cardinality constraint and multiple-choice knapsack, admit a fully polynomial-time approximation scheme (Fully PTAS), the best known result for BM on a general matroid is an Efficient PTAS. Prior to this work, the existence of a Fully PTAS for BM, and more generally, for any problem in the family of MOL problems, has been open. In this paper, we answer this question negatively by showing that none of the (non-trivial) problems in this family admits a Fully PTAS. This resolves the complexity status of several well studied problems. Our main result is obtained by showing first that exact weight matroid basis (EMB) does not admit a pseudo-polynomial time algorithm. This distinguishes EMB from the special cases of k-subset sum and EMB on a linear matroid, which are solvable in pseudo-polynomial time. We then obtain unconditional hardness results for the family of MOL problems in the oracle model (even if randomization is allowed), and show that the same results hold when the matroids are encoded as part of the input, assuming P ≠ NP. For the hardness proof of EMB, we introduce the Π-matroid family. This intricate subclass of matroids, which exploits the interaction between a weight function and the matroid constraint, may find use in tackling other matroid optimization problems.

Cite as

Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Lower Bounds for Matroid Optimization Problems with a Linear Constraint. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 56:1-56:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doronarad_et_al:LIPIcs.ICALP.2024.56,
  author =	{Doron-Arad, Ilan and Kulik, Ariel and Shachnai, Hadas},
  title =	{{Lower Bounds for Matroid Optimization Problems with a Linear Constraint}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{56:1--56:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.56},
  URN =		{urn:nbn:de:0030-drops-201990},
  doi =		{10.4230/LIPIcs.ICALP.2024.56},
  annote =	{Keywords: matroid optimization, budgeted problems, knapsack, approximation schemes}
}
Document
Track A: Algorithms, Complexity and Games
Delineating Half-Integrality of the Erdős-Pósa Property for Minors: The Case of Surfaces

Authors: Christophe Paul, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In 1986 Robertson and Seymour proved a generalization of the seminal result of Erdős and Pósa on the duality of packing and covering cycles: A graph has the Erdős-Pósa property for minors if and only if it is planar. In particular, for every non-planar graph H they gave examples showing that the Erdős-Pósa property does not hold for H. Recently, Liu confirmed a conjecture of Thomas and showed that every graph has the half-integral Erdős-Pósa property for minors. Liu’s proof is non-constructive and to this date, with the exception of a small number of examples, no constructive proof is known. In this paper, we initiate the delineation of the half-integrality of the Erdős-Pósa property for minors. We conjecture that for every graph H, there exists a unique (up to a suitable equivalence relation on graph parameters) graph parameter EP_H such that H has the Erdős-Pósa property in a minor-closed graph class 𝒢 if and only if sup{EP_H(G) ∣ G ∈ 𝒢} is finite. We prove this conjecture for the class ℋ of Kuratowski-connected shallow-vortex minors by showing that, for every non-planar H ∈ ℋ, the parameter EP_H(G) is precisely the maximum order of a Robertson-Seymour counterexample to the Erdős-Pósa property of H which can be found as a minor in G. Our results are constructive and imply, for the first time, parameterized algorithms that find either a packing, or a cover, or one of the Robertson-Seymour counterexamples, certifying the existence of a half-integral packing for the graphs in ℋ.

Cite as

Christophe Paul, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Delineating Half-Integrality of the Erdős-Pósa Property for Minors: The Case of Surfaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 114:1-114:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.ICALP.2024.114,
  author =	{Paul, Christophe and Protopapas, Evangelos and Thilikos, Dimitrios M. and Wiederrecht, Sebastian},
  title =	{{Delineating Half-Integrality of the Erd\H{o}s-P\'{o}sa Property for Minors: The Case of Surfaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{114:1--114:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.114},
  URN =		{urn:nbn:de:0030-drops-202576},
  doi =		{10.4230/LIPIcs.ICALP.2024.114},
  annote =	{Keywords: Erd\H{o}s-P\'{o}sa property, Erd\H{o}s-P\'{o}sa pair, Graph parameters, Graph minors, Universal obstruction, Surface containment}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification

Authors: Jakub Gajarský and Rose McCarty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Graph classes of bounded tree rank were introduced recently in the context of the model checking problem for first-order logic of graphs. These graph classes are a common generalization of graph classes of bounded degree and bounded treedepth, and they are a special case of graph classes of bounded expansion. We introduce a notion of decomposition for these classes and show that these decompositions can be efficiently computed. Also, a natural extension of our decomposition leads to a new characterization and decomposition for graph classes of bounded expansion (and an efficient algorithm computing this decomposition). We then focus on interpretations of graph classes of bounded tree rank. We give a characterization of graph classes interpretable in graph classes of tree rank 2. Importantly, our characterization leads to an efficient sparsification procedure: For any graph class 𝒞 interpretable in a graph class of tree rank at most 2, there is a polynomial time algorithm that to any G ∈ 𝒞 computes a (sparse) graph H from a fixed graph class of tree rank at most 2 such that G = I(H) for a fixed interpretation I. To the best of our knowledge, this is the first efficient "interpretation reversal" result that generalizes the result of Gajarský et al. [LICS 2016], who showed an analogous result for graph classes interpretable in classes of graphs of bounded degree.

Cite as

Jakub Gajarský and Rose McCarty. On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 137:1-137:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2024.137,
  author =	{Gajarsk\'{y}, Jakub and McCarty, Rose},
  title =	{{On Classes of Bounded Tree Rank, Their Interpretations, and Efficient Sparsification}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{137:1--137:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.137},
  URN =		{urn:nbn:de:0030-drops-202802},
  doi =		{10.4230/LIPIcs.ICALP.2024.137},
  annote =	{Keywords: First-order model checking, structural graph theory, structural sparsity}
}
Document
Computing Paths of Large Rank in Planar Frameworks Deterministically

Authors: Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A framework consists of an undirected graph G and a matroid M whose elements correspond to the vertices of G. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed parameterized algorithms for computing paths of rank k in frameworks. More precisely, for vertices s and t of G, and an integer k, they gave FPT algorithms parameterized by k deciding whether there is an (s,t)-path in G whose vertex set contains a subset of elements of M of rank k. These algorithms are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and therefore the existence of a deterministic FPT algorithm for this problem remains open. We present the first deterministic FPT algorithm that solves the problem in frameworks whose underlying graph G is planar. While the running time of our algorithm is worse than the running times of the recent randomized algorithms, our algorithm works on more general classes of matroids. In particular, this is the first FPT algorithm for the case when matroid M is represented over rationals. Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us to employ the toolbox of representative sets to design a dynamic programming procedure solving the problem efficiently on instances of bounded treewidth.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis. Computing Paths of Large Rank in Planar Frameworks Deterministically. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 32:1-32:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ISAAC.2023.32,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Stamoulis, Giannos},
  title =	{{Computing Paths of Large Rank in Planar Frameworks Deterministically}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{32:1--32:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.32},
  URN =		{urn:nbn:de:0030-drops-193341},
  doi =		{10.4230/LIPIcs.ISAAC.2023.32},
  annote =	{Keywords: Planar graph, longest path, linear matroid, irrelevant vertex}
}
Document
Track A: Algorithms, Complexity and Games
Compound Logics for Modification Problems

Authors: Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSOL) and have models of bounded treewidth, while target sentences express first-order logic (FOL) properties along with minor-exclusion. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Also, it permits the modeling of wide families of problems involving vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth), multistage modifications, and various cut problems. Our main result is that, for this compound logic, model-checking can be done in quadratic time. All derived algorithms are constructive and this, as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle’s theorem does not apply.

Cite as

Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Compound Logics for Modification Problems. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 61:1-61:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2023.61,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.},
  title =	{{Compound Logics for Modification Problems}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{61:1--61:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.61},
  URN =		{urn:nbn:de:0030-drops-181137},
  doi =		{10.4230/LIPIcs.ICALP.2023.61},
  annote =	{Keywords: Algorithmic meta-theorems, Graph modification problems, Model-checking, Graph minors, First-order logic, Monadic second-order logic, Flat Wall theorem, Irrelevant vertex technique}
}
Document
Track A: Algorithms, Complexity and Games
Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

Authors: Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Let G be a minor-closed graph class and let G be an n-vertex graph. We say that G is a k-apex of G if G contains a set S of at most k vertices such that G⧵S belongs to G. Our first result is an algorithm that decides whether G is a k-apex of G in time 2^poly(k)⋅n². This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022], whose running time was 2^poly(k)⋅n³. The elimination distance of G to G, denoted by ed_G(G), is the minimum number of rounds required to reduce each connected component of G to a graph in G by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] proved the existence of an FPT-algorithm, with parameter k, to decide whether ed_G(G) ≤ k. This algorithm is based on the computability of the minor-obstructions and its dependence on k is not explicit. We extend the techniques used in the first algorithm to decide whether ed_G(G) ≤ k in time 2^{2^{2^poly(k)}}⋅n². This is the first algorithm for this problem with an explicit parametric dependence in k. In the special case where G excludes some apex-graph as a minor, we give two alternative algorithms, one running in time 2^{2^O(k²log k)}⋅n² and one running in time 2^{poly(k)}⋅n³. As a stepping stone for these algorithms, we provide an algorithm that decides whether ed_G(G) ≤ k in time 2^O(tw⋅ k + tw log tw)⋅n, where tw is the treewidth of G. This algorithm combines the dynamic programming framework of Reidl, Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only the empty graph (i.e., for treedepth) with the representative-based techniques introduced by Baste, Sau, and Thilikos [SODA 2020]. In all the algorithmic complexities above, poly is a polynomial function whose degree depends on G, while the hidden constants also depend on G. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs E_k(G) = {G ∣ ed_G(G) ≤ k}.

Cite as

Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{morelle_et_al:LIPIcs.ICALP.2023.93,
  author =	{Morelle, Laure and Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.},
  title =	{{Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.93},
  URN =		{urn:nbn:de:0030-drops-181458},
  doi =		{10.4230/LIPIcs.ICALP.2023.93},
  annote =	{Keywords: Graph minors, Parameterized algorithms, Graph modification problems, Vertex deletion, Elimination distance, Irrelevant vertex technique, Flat Wall Theorem, Obstructions}
}
Document
An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

Authors: Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
In general, a graph modification problem is defined by a graph modification operation ⊠ and a target graph property 𝒫. Typically, the modification operation ⊠ may be vertex removal, edge removal, edge contraction, or edge addition and the question is, given a graph G and an integer k, whether it is possible to transform G to a graph in 𝒫 after applying k times the operation ⊠ on G. This problem has been extensively studied for particilar instantiations of ⊠ and 𝒫. In this paper we consider the general property 𝒫_ϕ of being planar and, moreover, being a model of some First-Order Logic sentence ϕ (an FOL-sentence). We call the corresponding meta-problem Graph ⊠-Modification to Planarity and ϕ and prove the following algorithmic meta-theorem: there exists a function f: ℕ² → ℕ such that, for every ⊠ and every FOL sentence ϕ, the Graph ⊠-Modification to Planarity and ϕ is solvable in f(k,|ϕ|)⋅n² time. The proof constitutes a hybrid of two different classic techniques in graph algorithms. The first is the irrelevant vertex technique that is typically used in the context of Graph Minors and deals with properties such as planarity or surface-embeddability (that are not FOL-expressible) and the second is the use of Gaifman’s Locality Theorem that is the theoretical base for the meta-algorithmic study of FOL-expressible problems.

Cite as

Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 51:1-51:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2020.51,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Stamoulis, Giannos and Thilikos, Dimitrios M.},
  title =	{{An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{51:1--51:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.51},
  URN =		{urn:nbn:de:0030-drops-129172},
  doi =		{10.4230/LIPIcs.ESA.2020.51},
  annote =	{Keywords: Graph modification Problems, Algorithmic meta-theorems, First Order Logic, Irrelevant vertex technique, Planar graphs, Surface embeddable graphs}
}
Document
Track A: Algorithms, Complexity and Games
An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes

Authors: Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Let G be a graph class. We say that a graph G is a k-apex of G if G contains a set S of at most k vertices such that G⧵S belongs to G. We prove that if G is minor-closed, then there is an algorithm that either returns a set S certifying that G is a k-apex of G or reports that such a set does not exist, in 2^{poly(k)}n³ time. Here poly is a polynomial function whose degree depends on the maximum size of a minor-obstruction of G, i.e., the minor-minimal set of graphs not belonging to G. In the special case where G excludes some apex graph as a minor, we give an alternative algorithm running in 2^{poly(k)}n² time.

Cite as

Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sau_et_al:LIPIcs.ICALP.2020.95,
  author =	{Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.},
  title =	{{An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.95},
  URN =		{urn:nbn:de:0030-drops-125027},
  doi =		{10.4230/LIPIcs.ICALP.2020.95},
  annote =	{Keywords: Graph modification problems, irrelevant vertex technique, graph minors, parameterized algorithms}
}
  • Refine by Author
  • 5 Stamoulis, Giannos
  • 5 Thilikos, Dimitrios M.
  • 4 Fomin, Fedor V.
  • 4 Golovach, Petr A.
  • 4 Sau, Ignasi
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Parameterized complexity and exact algorithms
  • 3 Mathematics of computing → Graph algorithms
  • 2 Mathematics of computing → Graph theory
  • 2 Theory of computation → Graph algorithms analysis
  • 1 Information systems → Fixed length attributes
  • Show More...

  • Refine by Keyword
  • 3 Graph minors
  • 3 Graph modification problems
  • 3 Irrelevant vertex technique
  • 2 Algorithmic meta-theorems
  • 1 Elimination distance
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 7 2024
  • 3 2023
  • 2 2020