6 Search Results for "Venturini, Rossano"


Document
Faster Treewidth-Based Approximations for Wiener Index

Authors: Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a widely-used graph property in chemistry, initially introduced to examine the link between boiling points and structural properties of alkanes, which later found notable applications in drug design. Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every vertex models an atom of a molecule and every edge models a bond, is of significant interest to the computational chemistry community. In this work, we build upon the observation that molecular graphs are sparse and tree-like and focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index. We present a new randomized approximation algorithm using a combination of tree decompositions and centroid decompositions. Our algorithm approximates the Wiener index within any desired multiplicative factor (1 ± ε) in time O(n ⋅ log n ⋅ k³ + √n ⋅ k/ε²), where n is the number of vertices of the graph and k is the treewidth. This time bound is almost-linear in n. Finally, we provide experimental results over standard benchmark molecules from PubChem and the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world chemical graphs and comparing it with previous methods.

Cite as

Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani. Faster Treewidth-Based Approximations for Wiener Index. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{conrado_et_al:LIPIcs.SEA.2024.6,
  author =	{Conrado, Giovanna Kobus and Goharshady, Amir Kafshdar and Hudec, Pavel and Li, Pingjiang and Motwani, Harshit Jitendra},
  title =	{{Faster Treewidth-Based Approximations for Wiener Index}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.6},
  URN =		{urn:nbn:de:0030-drops-203718},
  doi =		{10.4230/LIPIcs.SEA.2024.6},
  annote =	{Keywords: Computational Chemistry, Treewidth, Wiener Index}
}
Document
SPIDER: Improved Succinct Rank and Select Performance

Authors: Matthew D. Laws, Jocelyn Bliven, Kit Conklin, Elyes Laalai, Samuel McCauley, and Zach S. Sturdevant

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Rank and select data structures seek to preprocess a bit vector to quickly answer two kinds of queries: Rank(i) gives the number of 1 bits in slots 0 through i, and Select(j) gives the first slot s with Rank(s) = j. A succinct data structure can answer these queries while using space much smaller than the size of the original bit vector. State of the art succinct rank and select data structures use as little as 4% extra space (over the underlying bit vector) while answering rank and select queries very quickly. Rank queries can be answered using only a handful of array accesses. Select queries can be answered by starting with similar array accesses, followed by a linear scan through the bit vector. Nonetheless, a tradeoff remains: data structures that use under 4% space are significantly slower at answering rank and select queries than less-space-efficient data structures (using, say, over 20% extra space). In this paper we make significantly progress towards closing this gap. We give a new data structure, SPIDER, which uses 3.82% extra space. SPIDER gives the best known rank query time for data sets of 8 billion or more bits, even compared to much less space-efficient data structures. For select queries, SPIDER outperforms all data structures that use less than 4% space, and significantly closes the gap in select performance between data structures with less than 4% space, and those that use more (over 20% for both rank and select) space. SPIDER makes two main technical contributions. For rank queries, it improves performance by interleaving the metadata with the bit vector to improve cache efficiency. For select queries, it uses predictions to almost eliminate the cost of the linear scan. These predictions are inspired by recent results on data structures with machine-learned predictions, adapted to the succinct data structure setting. Our results hold on both real and synthetic data, showing that these predictions are effective in practice.

Cite as

Matthew D. Laws, Jocelyn Bliven, Kit Conklin, Elyes Laalai, Samuel McCauley, and Zach S. Sturdevant. SPIDER: Improved Succinct Rank and Select Performance. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{laws_et_al:LIPIcs.SEA.2024.21,
  author =	{Laws, Matthew D. and Bliven, Jocelyn and Conklin, Kit and Laalai, Elyes and McCauley, Samuel and Sturdevant, Zach S.},
  title =	{{SPIDER: Improved Succinct Rank and Select Performance}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.21},
  URN =		{urn:nbn:de:0030-drops-203865},
  doi =		{10.4230/LIPIcs.SEA.2024.21},
  annote =	{Keywords: Rank and Select, Succinct Data Structures, Data Structres, Cache Performance, Predictions}
}
Document
Track A: Algorithms, Complexity and Games
Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching

Authors: Kento Iseri, Tomohiro I, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A parameterized string (p-string) is a string over an alphabet (Σ_s ∪ Σ_p), where Σ_s and Σ_p are disjoint alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols), respectively. Two p-strings x and y are said to parameterized match (p-match) if and only if x can be transformed into y by applying a bijection on Σ_p to every occurrence of p-symbols in x. The indexing problem for p-matching is to preprocess a p-string T of length n so that we can efficiently find the occurrences of substrings of T that p-match with a given pattern. Let σ_s and respectively σ_p be the numbers of distinct s-symbols and p-symbols that appear in T and σ = σ_s + σ_p. Extending the Burrows-Wheeler Transform (BWT) based index for exact string pattern matching, Ganguly et al. [SODA 2017] proposed parameterized BWTs (pBWTs) to design the first compact index for p-matching, and posed an open problem on how to construct the pBWT-based index in compact space, i.e., in O(n lg |Σ_s ∪ Σ_p|) bits of space. Hashimoto et al. [SPIRE 2022] showed how to construct the pBWT for T, under the assumption that Σ_s ∪ Σ_p = [0..O(σ)], in O(n lg σ) bits of space and O(n (σ_p lg n)/(lg lg n)) time in an online manner while reading the symbols of T from right to left. In this paper, we refine Hashimoto et al.’s algorithm to work in O(n lg σ) bits of space and O(n (lg σ_p lg n)/(lg lg n)) time in a more general assumption that Σ_s ∪ Σ_p = [0..n^{O(1)}]. Our result has an immediate application to constructing parameterized suffix arrays in O(n (lg σ_p lg n)/(lg lg n)) time and O(n lg σ) bits of working space. We also show that our data structure can support backward search, a core procedure of BWT-based indexes, at any stage of the online construction, making it the first compact index for p-matching that can be constructed in compact space and even in an online manner.

Cite as

Kento Iseri, Tomohiro I, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara. Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 89:1-89:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{iseri_et_al:LIPIcs.ICALP.2024.89,
  author =	{Iseri, Kento and I, Tomohiro and Hendrian, Diptarama and K\"{o}ppl, Dominik and Yoshinaka, Ryo and Shinohara, Ayumi},
  title =	{{Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{89:1--89:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.89},
  URN =		{urn:nbn:de:0030-drops-202324},
  doi =		{10.4230/LIPIcs.ICALP.2024.89},
  annote =	{Keywords: Index for parameterized pattern matching, Parameterized Burrows-Wheeler Transform, Online construction}
}
Document
Compressed Weighted de Bruijn Graphs

Authors: Giuseppe F. Italiano, Nicola Prezza, Blerina Sinaimeri, and Rossano Venturini

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
We propose a new compressed representation for weighted de Bruijn graphs, which is based on the idea of delta-encoding the variations of k-mer abundances on a spanning branching of the graph. Our new data structure is likely to be of practical value: to give an idea, when combined with the compressed BOSS de Bruijn graph representation, it encodes the weighted de Bruijn graph of a 16x-covered DNA read-set (60M distinct k-mers, k = 28) within 4.15 bits per distinct k-mer and can answer abundance queries in about 60 microseconds on a standard machine. In contrast, state of the art tools declare a space usage of at least 30 bits per distinct k-mer for the same task, which is confirmed by our experiments. As a by-product of our new data structure, we exhibit efficient compressed data structures for answering partial sums on edge-weighted trees, which might be of independent interest.

Cite as

Giuseppe F. Italiano, Nicola Prezza, Blerina Sinaimeri, and Rossano Venturini. Compressed Weighted de Bruijn Graphs. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{italiano_et_al:LIPIcs.CPM.2021.16,
  author =	{Italiano, Giuseppe F. and Prezza, Nicola and Sinaimeri, Blerina and Venturini, Rossano},
  title =	{{Compressed Weighted de Bruijn Graphs}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.16},
  URN =		{urn:nbn:de:0030-drops-139675},
  doi =		{10.4230/LIPIcs.CPM.2021.16},
  annote =	{Keywords: weighted de Bruijn graphs, k-mer annotation, compressed data structures, partial sums}
}
Document
An Encoding for Order-Preserving Matching

Authors: Travis Gagie, Giovanni Manzini, and Rossano Venturini

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
Encoding data structures store enough information to answer the queries they are meant to support but not enough to recover their underlying datasets. In this paper we give the first encoding data structure for the challenging problem of order-preserving pattern matching. This problem was introduced only a few years ago but has already attracted significant attention because of its applications in data analysis. Two strings are said to be an order-preserving match if the relative order of their characters is the same: e.g., (4, 1, 3, 2) and (10, 3, 7, 5) are an order-preserving match. We show how, given a string S[1..n] over an arbitrary alphabet of size sigma and a constant c >=1, we can build an O(n log log n)-bit encoding such that later, given a pattern P[1..m] with m >= log^c n, we can return the number of order-preserving occurrences of P in S in O(m) time. Within the same time bound we can also return the starting position of some order-preserving match for P in S (if such a match exists). We prove that our space bound is within a constant factor of optimal if log(sigma) = Omega(log log n); our query time is optimal if log(sigma) = Omega(log n). Our space bound contrasts with the Omega(n log n) bits needed in the worst case to store S itself, an index for order-preserving pattern matching with no restrictions on the pattern length, or an index for standard pattern matching even with restrictions on the pattern length. Moreover, we can build our encoding knowing only how each character compares to O(log^c n) neighbouring characters.

Cite as

Travis Gagie, Giovanni Manzini, and Rossano Venturini. An Encoding for Order-Preserving Matching. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gagie_et_al:LIPIcs.ESA.2017.38,
  author =	{Gagie, Travis and Manzini, Giovanni and Venturini, Rossano},
  title =	{{An Encoding for Order-Preserving Matching}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.38},
  URN =		{urn:nbn:de:0030-drops-78726},
  doi =		{10.4230/LIPIcs.ESA.2017.38},
  annote =	{Keywords: Compact data structures, encodings, order-preserving matching}
}
Document
Dynamic Elias-Fano Representation

Authors: Giulio Ermanno Pibiri and Rossano Venturini

Published in: LIPIcs, Volume 78, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)


Abstract
We show that it is possible to store a dynamic ordered set S of n integers drawn from a bounded universe of size u in space close to the information-theoretic lower bound and preserve, at the same time, the asymptotic time optimality of the operations. Our results leverage on the Elias-Fano representation of monotone integer sequences, which can be shown to be less than half a bit per element away from the information-theoretic minimum. In particular, considering a RAM model with memory word size Theta(log u) bits, when integers are drawn from a polynomial universe of size u = n^gamma for any gamma = Theta(1), we add o(n) bits to the static Elias-Fano representation in order to: 1. support static predecessor/successor queries in O(min{1+log(u/n), loglog n}); 2. make S grow in an append-only fashion by spending O(1) per inserted element; 3. describe a dynamic data structure supporting random access in O(log n / loglog n) worst-case, insertions/deletions in O(log n / loglog n) amortized and predecessor/successor queries in O(min{1+log(u/n), loglog n}) worst-case time. These time bounds are optimal.

Cite as

Giulio Ermanno Pibiri and Rossano Venturini. Dynamic Elias-Fano Representation. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 78, pp. 30:1-30:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{pibiri_et_al:LIPIcs.CPM.2017.30,
  author =	{Pibiri, Giulio Ermanno and Venturini, Rossano},
  title =	{{Dynamic Elias-Fano Representation}},
  booktitle =	{28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)},
  pages =	{30:1--30:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-039-2},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{78},
  editor =	{K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.30},
  URN =		{urn:nbn:de:0030-drops-73244},
  doi =		{10.4230/LIPIcs.CPM.2017.30},
  annote =	{Keywords: succinct data structures, integer sets, predecessor problem, Elias-Fano}
}
  • Refine by Author
  • 3 Venturini, Rossano
  • 1 Bliven, Jocelyn
  • 1 Conklin, Kit
  • 1 Conrado, Giovanna Kobus
  • 1 Gagie, Travis
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Data structures design and analysis
  • 1 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Theory of computation → Pattern matching
  • 1 Theory of computation → Sorting and searching

  • Refine by Keyword
  • 1 Cache Performance
  • 1 Compact data structures
  • 1 Computational Chemistry
  • 1 Data Structres
  • 1 Elias-Fano
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 3 2024
  • 2 2017
  • 1 2021