3 Search Results for "Weinberger, Alexandra"


Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Drawings of Complete Multipartite Graphs up to Triangle Flips

Authors: Oswin Aichholzer, Man-Kwun Chiu, Hung P. Hoang, Michael Hoffmann, Jan Kynčl, Yannic Maus, Birgit Vogtenhuber, and Alexandra Weinberger

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident edges, represented by the labels of their other endpoints. The extended rotation system (ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of edges has at most one common point. Gioan’s Theorem states that for any two simple drawings of the complete graph K_n with the same crossing edge pairs, one drawing can be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell, via a local transformation. We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable into each other by a sequence of triangle flips is that they have the same ERS. As our main result, we show that for the large class of complete multipartite graphs, this necessary condition is in fact also sufficient. We present two different proofs of this result, one of which is shorter, while the other one yields a polynomial time algorithm for which the number of needed triangle flips for graphs on n vertices is bounded by O(n^{16}). The latter proof uses a Carathéodory-type theorem for simple drawings of complete multipartite graphs, which we believe to be of independent interest. Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially tight in the following sense: For the complete bipartite graph K_{m,n} minus two edges and K_{m,n} plus one edge for any m,n ≥ 4, as well as K_n minus a 4-cycle for any n ≥ 5, there exist two simple drawings with the same ERS that cannot be transformed into each other using triangle flips. So having the same ERS does not remain sufficient when removing or adding very few edges.

Cite as

Oswin Aichholzer, Man-Kwun Chiu, Hung P. Hoang, Michael Hoffmann, Jan Kynčl, Yannic Maus, Birgit Vogtenhuber, and Alexandra Weinberger. Drawings of Complete Multipartite Graphs up to Triangle Flips. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2023.6,
  author =	{Aichholzer, Oswin and Chiu, Man-Kwun and Hoang, Hung P. and Hoffmann, Michael and Kyn\v{c}l, Jan and Maus, Yannic and Vogtenhuber, Birgit and Weinberger, Alexandra},
  title =	{{Drawings of Complete Multipartite Graphs up to Triangle Flips}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.6},
  URN =		{urn:nbn:de:0030-drops-178563},
  doi =		{10.4230/LIPIcs.SoCG.2023.6},
  annote =	{Keywords: Simple drawings, simple topological graphs, complete graphs, multipartite graphs, k-partite graphs, bipartite graphs, Gioan’s Theorem, triangle flips, Reidemeister moves}
}
Document
Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Authors: Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). We introduce a special kind of simple drawings that we call generalized twisted drawings. A simple drawing is generalized twisted if there is a point O such that every ray emanating from O crosses every edge of the drawing at most once and there is a ray emanating from O which crosses every edge exactly once. Via this new class of simple drawings, we show that every simple drawing of the complete graph with n vertices contains Ω(n^{1/2}) pairwise disjoint edges and a plane path of length Ω((log n)/(log log n)). Both results improve over previously known best lower bounds. On the way we show several structural results about and properties of generalized twisted drawings. We further present different characterizations of generalized twisted drawings, which might be of independent interest.

Cite as

Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2022.5,
  author =	{Aichholzer, Oswin and Garc{\'\i}a, Alfredo and Tejel, Javier and Vogtenhuber, Birgit and Weinberger, Alexandra},
  title =	{{Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.5},
  URN =		{urn:nbn:de:0030-drops-160136},
  doi =		{10.4230/LIPIcs.SoCG.2022.5},
  annote =	{Keywords: Simple drawings, simple topological graphs, disjoint edges, plane matching, plane path}
}
  • Refine by Author
  • 2 Aichholzer, Oswin
  • 2 Vogtenhuber, Birgit
  • 2 Weinberger, Alexandra
  • 1 Chiu, Man-Kwun
  • 1 Delgrande, James P.
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Combinatorics
  • 2 Mathematics of computing → Graph theory
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Human-centered computing → Graph drawings
  • Show More...

  • Refine by Keyword
  • 2 Simple drawings
  • 2 simple topological graphs
  • 1 Applications of logics
  • 1 Declarative representations
  • 1 Formal logic
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023
  • 1 2024