20 Search Results for "Werneck, Renato F."


Volume

OASIcs, Volume 54

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)

ATMOS 2016, August 25, 2016, Aarhus, Denmark

Editors: Marc Goerigk and Renato F. Werneck

Document
Faster Treewidth-Based Approximations for Wiener Index

Authors: Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a widely-used graph property in chemistry, initially introduced to examine the link between boiling points and structural properties of alkanes, which later found notable applications in drug design. Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every vertex models an atom of a molecule and every edge models a bond, is of significant interest to the computational chemistry community. In this work, we build upon the observation that molecular graphs are sparse and tree-like and focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index. We present a new randomized approximation algorithm using a combination of tree decompositions and centroid decompositions. Our algorithm approximates the Wiener index within any desired multiplicative factor (1 ± ε) in time O(n ⋅ log n ⋅ k³ + √n ⋅ k/ε²), where n is the number of vertices of the graph and k is the treewidth. This time bound is almost-linear in n. Finally, we provide experimental results over standard benchmark molecules from PubChem and the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world chemical graphs and comparing it with previous methods.

Cite as

Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani. Faster Treewidth-Based Approximations for Wiener Index. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{conrado_et_al:LIPIcs.SEA.2024.6,
  author =	{Conrado, Giovanna Kobus and Goharshady, Amir Kafshdar and Hudec, Pavel and Li, Pingjiang and Motwani, Harshit Jitendra},
  title =	{{Faster Treewidth-Based Approximations for Wiener Index}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.6},
  URN =		{urn:nbn:de:0030-drops-203718},
  doi =		{10.4230/LIPIcs.SEA.2024.6},
  annote =	{Keywords: Computational Chemistry, Treewidth, Wiener Index}
}
Document
Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks

Authors: Kenneth Langedal, Demian Hespe, and Peter Sanders

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Identifying a maximum independent set is a fundamental NP-hard problem. This problem has several real-world applications and requires finding the largest possible set of vertices not adjacent to each other in an undirected graph. Over the past few years, branch-and-bound and branch-and-reduce algorithms have emerged as some of the most effective methods for solving the problem exactly. Specifically, the branch-and-reduce approach, which combines branch-and-bound principles with reduction rules, has proven particularly successful in tackling previously unmanageable real-world instances. This progress was largely made possible by the development of more effective reduction rules. Nevertheless, other key components that can impact the efficiency of these algorithms have not received the same level of interest. Among these is the branching strategy, which determines which vertex to branch on next. Until recently, the most widely used strategy was to choose the vertex of the highest degree. In this work, we present a graph neural network approach for selecting the next branching vertex. The intricate nature of current branch-and-bound solvers makes supervised and reinforcement learning difficult. Therefore, we use a population-based genetic algorithm to evolve the model’s parameters instead. Our proposed approach results in a speedup on 73% of the benchmark instances with a median speedup of 24%.

Cite as

Kenneth Langedal, Demian Hespe, and Peter Sanders. Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{langedal_et_al:LIPIcs.SEA.2024.20,
  author =	{Langedal, Kenneth and Hespe, Demian and Sanders, Peter},
  title =	{{Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.20},
  URN =		{urn:nbn:de:0030-drops-203853},
  doi =		{10.4230/LIPIcs.SEA.2024.20},
  annote =	{Keywords: Graphs, Independent Set, Vertex Cover, Graph Neural Networks, Branch-and-Reduce}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
Document
Complete Volume
OASIcs, Volume 54, ATMOS'16, Complete Volume

Authors: Marc Goerigk and Renato Werneck

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
OASIcs, Volume 54, ATMOS'16, Complete Volume

Cite as

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Proceedings{goerigk_et_al:OASIcs.ATMOS.2016,
  title =	{{OASIcs, Volume 54, ATMOS'16, Complete Volume}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016},
  URN =		{urn:nbn:de:0030-drops-66724},
  doi =		{10.4230/OASIcs.ATMOS.2016},
  annote =	{Keywords: Analysis of Algorithms and Problem Complexity, Optimization, Combinatorics, Graph Theory, Applications}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Organization

Authors: Marc Goerigk and Renato F. Werneck

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
Front Matter, Table of Contents, Preface, Organization

Cite as

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{goerigk_et_al:OASIcs.ATMOS.2016.0,
  author =	{Goerigk, Marc and Werneck, Renato F.},
  title =	{{Front Matter, Table of Contents, Preface, Organization}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{0:i--0:x},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.0},
  URN =		{urn:nbn:de:0030-drops-65243},
  doi =		{10.4230/OASIcs.ATMOS.2016.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Organization}
}
Document
A Matching Approach for Periodic Timetabling

Authors: Julius Pätzold and Anita Schöbel

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard, but with important applications mainly for finding good timetables in public transportation. In this paper we consider PESP in public transportation, but in a reduced version (r-PESP) in which the driving and waiting times of the vehicles are fixed to their lower bounds. This results in a still NP-hard problem which has less variables, since only one variable determines the schedule for a whole line. We propose a formulation for r-PESP which is based on scheduling the lines. This enables us on the one hand to identify a finite candidate set and an exact solution approach. On the other hand, we use this formulation to derive a matching-based heuristic for solving PESP. Our experiments on close to real-world instances from LinTim show that our heuristic is able to compute competitive timetables in a very short runtime.

Cite as

Julius Pätzold and Anita Schöbel. A Matching Approach for Periodic Timetabling. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{patzold_et_al:OASIcs.ATMOS.2016.1,
  author =	{P\"{a}tzold, Julius and Sch\"{o}bel, Anita},
  title =	{{A Matching Approach for Periodic Timetabling}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{1:1--1:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.1},
  URN =		{urn:nbn:de:0030-drops-65251},
  doi =		{10.4230/OASIcs.ATMOS.2016.1},
  annote =	{Keywords: PESP, Timetabling, Public Transport, Matching, Finite Dominating Set}
}
Document
Sensitivity Analysis and Coupled Decisions in Passenger Flow-Based Train Dispatching

Authors: Martin Lemnian, Matthias Müller-Hannemann, and Ralf Rückert

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
Frequent train delays make passenger-oriented train dispatching a task of high practical relevance. In case of delays, dispatchers have to decide whether trains should wait for one or several delayed feeder trains or should depart on time. To support dispatchers, we have recently introduced the train dispatching framework PANDA (CASPT 2015). In this paper, we present and evaluate two enhancements which are also of general interest. First, we study the sensitivity of waiting decisions with respect to the accuracy of passenger flow data. More specifically, we develop an integer linear programming formulation for the following optimization problem: Given a critical transfer, what is the minimum number of passengers we have to add or to subtract from the given passenger flow such that the decision would change from waiting to non-waiting or vice versa? Based on experiments with realistic passenger flows and delay data from 2015 in Germany, an important empirical finding is that a significant fraction of all decisions is highly sensitive to small changes in passenger flow composition. Hence, very accurate passenger flows are needed in these cases. Second, we investigate the practical value of more sophisticated simulations. A simple strategy evaluates the effect of a waiting decision of some critical transfer on passenger delay subject to the assumption that all subsequent decisions are taken according to standard waiting time rules, as usually employed by railway companies like Deutsche Bahn. Here we analyze the impact of a higher level of simulation where waiting decisions for a critical transfer are considered jointly with one or more other decisions for subsequent transfers. We learn that such "coupled decisions" lead to improved solution in about 6.3% of all considered cases.

Cite as

Martin Lemnian, Matthias Müller-Hannemann, and Ralf Rückert. Sensitivity Analysis and Coupled Decisions in Passenger Flow-Based Train Dispatching. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{lemnian_et_al:OASIcs.ATMOS.2016.2,
  author =	{Lemnian, Martin and M\"{u}ller-Hannemann, Matthias and R\"{u}ckert, Ralf},
  title =	{{Sensitivity Analysis and Coupled Decisions in Passenger Flow-Based Train Dispatching}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{2:1--2:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.2},
  URN =		{urn:nbn:de:0030-drops-65264},
  doi =		{10.4230/OASIcs.ATMOS.2016.2},
  annote =	{Keywords: train delays, event-activity model, multi-criteria decisions, passenger flows, sensitivity analysis}
}
Document
Integrating Passengers' Routes in Periodic Timetabling: A SAT approach

Authors: Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard. Its main application is for designing periodic timetables in public transportation. To this end, the passengers' paths are required as input data. This is a drawback since the final paths which are used by the passengers depend on the timetable to be designed. Including the passengers' routing in the PESP hence improves the quality of the resulting timetables. However, this makes PESP even harder. Formulating the PESP as satisfiability problem and using SAT solvers for its solution has been shown to be a highly promising approach. The goal of this paper is to exploit if SAT solvers can also be used for the problem of integrated timetabling and passenger routing. In our model of the integrated problem we distribute origin-destination (OD) pairs temporally through the network by using time-slices in order to make the resulting model more realistic. We present a formulation of this integrated problem as integer program which we are able to transform to a satisfiability problem. We tested the latter formulation within numerical experiments, which are performed on Germany's long-distance passenger railway network. The computation's analysis in which we compare the integrated approach with the traditional one with fixed passengers' weights, show promising results for future scientific investigations.

Cite as

Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel. Integrating Passengers' Routes in Periodic Timetabling: A SAT approach. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gattermann_et_al:OASIcs.ATMOS.2016.3,
  author =	{Gattermann, Philine and Gro{\ss}mann, Peter and Nachtigall, Karl and Sch\"{o}bel, Anita},
  title =	{{Integrating Passengers' Routes in Periodic Timetabling: A SAT approach}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{3:1--3:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.3},
  URN =		{urn:nbn:de:0030-drops-65279},
  doi =		{10.4230/OASIcs.ATMOS.2016.3},
  annote =	{Keywords: PESP, Timetabling, Public Transport, Passengers' Routes, SAT}
}
Document
Pricing Toll Roads under Uncertainty

Authors: Trivikram Dokka, Alain Zemkoho, Sonali Sen Gupta, and Fabrice Talla Nobibon

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
We study the toll pricing problem when the non-toll costs on the network are not fixed and can vary over time. We assume that users who take their decisions, after the tolls are fixed, have full information of all costs before making their decision. Toll-setter, on the other hand, do not have any information of the future costs on the network. The only information toll-setter have is historical information (sample) of the network costs. In this work we study this problem on parallel networks and networks with few number of paths in single origin-destination setting. We formulate toll-setting problem in this setting as a distributionally robust optimization problem and propose a method to solve to it. We illustrate the usefulness of our approach by doing numerical experiments using a parallel network.

Cite as

Trivikram Dokka, Alain Zemkoho, Sonali Sen Gupta, and Fabrice Talla Nobibon. Pricing Toll Roads under Uncertainty. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dokka_et_al:OASIcs.ATMOS.2016.4,
  author =	{Dokka, Trivikram and Zemkoho, Alain and Gupta, Sonali Sen and Nobibon, Fabrice Talla},
  title =	{{Pricing Toll Roads under Uncertainty}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{4:1--4:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.4},
  URN =		{urn:nbn:de:0030-drops-65289},
  doi =		{10.4230/OASIcs.ATMOS.2016.4},
  annote =	{Keywords: Conditional value at risk, robust optimization, toll pricing}
}
Document
Scheduling Autonomous Vehicle Platoons Through an Unregulated Intersection

Authors: Juan José Besa Vial, William E. Devanny, David Eppstein, and Michael T. Goodrich

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
We study various versions of the problem of scheduling platoons of autonomous vehicles through an unregulated intersection, where an algorithm must schedule which platoons should wait so that others can go through, so as to minimize the maximum delay for any vehicle. We provide polynomial-time algorithms for constructing such schedules for a k-way merge intersection, for constant k, and for a crossing intersection involving two-way traffic. We also show that the more general problem of scheduling autonomous platoons through an intersection that includes both a k-way merge, for non-constant k, and a crossing of two-way traffic is NP-complete.

Cite as

Juan José Besa Vial, William E. Devanny, David Eppstein, and Michael T. Goodrich. Scheduling Autonomous Vehicle Platoons Through an Unregulated Intersection. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{besavial_et_al:OASIcs.ATMOS.2016.5,
  author =	{Besa Vial, Juan Jos\'{e} and Devanny, William E. and Eppstein, David and Goodrich, Michael T.},
  title =	{{Scheduling Autonomous Vehicle Platoons Through an Unregulated Intersection}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{5:1--5:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.5},
  URN =		{urn:nbn:de:0030-drops-65296},
  doi =		{10.4230/OASIcs.ATMOS.2016.5},
  annote =	{Keywords: autonomous vehicles, platoons, scheduling}
}
Document
Multi-Column Generation Model for the Locomotive Assignment Problem

Authors: Brigitte Jaumard and Huaining Tian

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
We propose a new decomposition model and a multi-column generation algorithm for solving the Locomotive Assignment Problem (LAP). The decomposition scheme relies on consist configurations, where each configuration is made of a set of trains pulled by the same set of locomotives. We use the concept of conflict graphs in order to reduce the number of trains to be considered in each consist configuration generator problem: this contributes to significantly reduce the fraction of the computational times spent in generating new potential consists. In addition, we define a column generation problem for each set of variables, leading to a multi-column generation process, with different types of columns. Numerical results, with different numbers of locomotives, are presented on adapted data sets coming from Canada Pacific Railway (CPR). They show that the newly proposed algorithm is able to solve exactly realistic data instances for a timeline spanning up to 6 weeks, in very reasonable computational times.

Cite as

Brigitte Jaumard and Huaining Tian. Multi-Column Generation Model for the Locomotive Assignment Problem. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{jaumard_et_al:OASIcs.ATMOS.2016.6,
  author =	{Jaumard, Brigitte and Tian, Huaining},
  title =	{{Multi-Column Generation Model for the Locomotive Assignment Problem}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{6:1--6:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.6},
  URN =		{urn:nbn:de:0030-drops-65302},
  doi =		{10.4230/OASIcs.ATMOS.2016.6},
  annote =	{Keywords: Railway optimization, Locomotive assignment, Column Generation}
}
Document
The Maximum Flow Problem for Oriented Flows

Authors: Stanley Schade and Martin Strehler

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
In several applications of network flows, additional constraints have to be considered. In this paper, we study flows, where the flow particles have an orientation. For example, cargo containers with doors only on one side and train coaches with 1st and 2nd class compartments have such an orientation. If the end position has a mandatory orientation, not every path from source to sink is feasible for routing or additional transposition maneuvers have to be made. As a result, a source-sink path may visit a certain vertex several times. We describe structural properties of optimal solutions, determine the computational complexity, and present an approach for approximating such flows.

Cite as

Stanley Schade and Martin Strehler. The Maximum Flow Problem for Oriented Flows. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{schade_et_al:OASIcs.ATMOS.2016.7,
  author =	{Schade, Stanley and Strehler, Martin},
  title =	{{The Maximum Flow Problem for Oriented Flows}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{7:1--7:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.7},
  URN =		{urn:nbn:de:0030-drops-65318},
  doi =		{10.4230/OASIcs.ATMOS.2016.7},
  annote =	{Keywords: network flow with orientation, graph expansion, approximation, container logistics, train routing}
}
Document
Optimizing Traffic Signal Timings for Mega Events

Authors: Robert Scheffler and Martin Strehler

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
Most approaches for optimizing traffic signal timings deal with the daily traffic. However, there are a few occasional events like football matches or concerts of musicians that lead to exceptional traffic situations. Still, such events occur more or less regularly and place and time are known in advance. Hence, it is possible to anticipate such events with special signal timings. In this paper, we present an extension of a cyclically time-expanded network flow model and a corresponding mixed-integer linear programming formulation for simultaneously optimizing traffic signal timings and traffic assignment for such events. Besides the mathematical analysis of this approach, we demonstrate its capabilities by computing signal timings for a real world scenario.

Cite as

Robert Scheffler and Martin Strehler. Optimizing Traffic Signal Timings for Mega Events. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{scheffler_et_al:OASIcs.ATMOS.2016.8,
  author =	{Scheffler, Robert and Strehler, Martin},
  title =	{{Optimizing Traffic Signal Timings for Mega Events}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{8:1--8:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.8},
  URN =		{urn:nbn:de:0030-drops-65323},
  doi =		{10.4230/OASIcs.ATMOS.2016.8},
  annote =	{Keywords: traffic flow, traffic signal timings, cyclically time-expanded network, mega event, exceptional traffic}
}
  • Refine by Author
  • 2 Goerigk, Marc
  • 2 Schöbel, Anita
  • 2 Strehler, Martin
  • 2 Werneck, Renato F.
  • 1 Besa Vial, Juan José
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Neural networks
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 3 Public Transport
  • 2 PESP
  • 2 Timetabling
  • 2 contraction hierarchies
  • 2 shortest paths
  • Show More...

  • Refine by Type
  • 19 document
  • 1 volume

  • Refine by Publication Year
  • 15 2016
  • 4 2024
  • 1 2011