19 Search Results for "Wooldridge, Michael"


Document
FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks

Authors: Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
The analysis and summarization of temporal networks are crucial for understanding complex interactions over time, yet pose significant computational challenges. This paper introduces FastMinTC+, an innovative heuristic approach designed to efficiently solve the Minimum Timeline Cover (MinTCover) problem in temporal networks. Our approach focuses on the optimization of activity timelines within temporal networks, aiming to provide both effective and computationally feasible solutions. By employing a low-complexity approach, FastMinTC+ adeptly handles massive temporal graphs, improving upon existing methods. Indeed, comparative evaluations on both synthetic and real-world datasets demonstrate that our algorithm outperforms established benchmarks with remarkable efficiency and accuracy. The results highlight the potential of heuristic approaches in the domain of temporal network analysis and open up new avenues for further research incorporating other computational techniques, for example deep learning, to enhance the adaptability and precision of such heuristics.

Cite as

Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi. FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lazzarinetti_et_al:LIPIcs.TIME.2024.20,
  author =	{Lazzarinetti, Giorgio and Manzoni, Sara and Zoppis, Italo and Dondi, Riccardo},
  title =	{{FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.20},
  URN =		{urn:nbn:de:0030-drops-212275},
  doi =		{10.4230/LIPIcs.TIME.2024.20},
  annote =	{Keywords: Temporal Networks, Activity Timeline, Timeline Cover, Vertex Cover, Optimization, Heuristic}
}
Document
Lean Formalization of Completeness Proof for Coalition Logic with Common Knowledge

Authors: Kai Obendrauf, Anne Baanen, Patrick Koopmann, and Vera Stebletsova

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Coalition Logic (CL) is a well-known formalism for reasoning about the strategic abilities of groups of agents in multi-agent systems. Coalition Logic with Common Knowledge (CLC) extends CL with operators from epistic logics, and thus with the ability to model the individual and common knowledge of agents. We have formalized the syntax and semantics of both logics in the interactive theorem prover Lean 4, and used it to prove soundness and completeness of its axiomatization. Our formalization uses the type class system to generalize over different aspects of CLC, thus allowing us to reuse some of to prove properties in related logics such as CL and CLK (CL with individual knowledge).

Cite as

Kai Obendrauf, Anne Baanen, Patrick Koopmann, and Vera Stebletsova. Lean Formalization of Completeness Proof for Coalition Logic with Common Knowledge. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{obendrauf_et_al:LIPIcs.ITP.2024.28,
  author =	{Obendrauf, Kai and Baanen, Anne and Koopmann, Patrick and Stebletsova, Vera},
  title =	{{Lean Formalization of Completeness Proof for Coalition Logic with Common Knowledge}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.28},
  URN =		{urn:nbn:de:0030-drops-207560},
  doi =		{10.4230/LIPIcs.ITP.2024.28},
  annote =	{Keywords: Multi-agent systems, Coalition Logic, Epistemic Logic, common knowledge, completeness, formal methods, Lean prover}
}
Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms

Authors: Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Pseudo-Boolean proof logging has been used successfully to provide certificates of optimality from a variety of constraint- and satisifability-style solvers that combine reasoning with a backtracking or clause-learning search. Another paradigm, occurring in dynamic programming and decision diagram solving, instead reasons about partial states and possible transitions between them. We describe a framework for generating clean and efficient pseudo-Boolean proofs for these kinds of algorithm, and use it to produce certifying algorithms for knapsack, longest path, and interval scheduling. Because we use a common proof system, we can also reason about hybrid solving algorithms: we demonstrate this by providing proof logging for a dynamic programming based knapsack propagator inside a constraint programming solver.

Cite as

Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov. Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{demirovic_et_al:LIPIcs.CP.2024.9,
  author =	{Demirovi\'{c}, Emir and McCreesh, Ciaran and McIlree, Matthew J. and Nordstr\"{o}m, Jakob and Oertel, Andy and Sidorov, Konstantin},
  title =	{{Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.9},
  URN =		{urn:nbn:de:0030-drops-206948},
  doi =		{10.4230/LIPIcs.CP.2024.9},
  annote =	{Keywords: Proof logging, dynamic programming, decision diagrams}
}
Document
Improved Bounds of Integer Solution Counts via Volume and Extending to Mixed-Integer Linear Constraints

Authors: Cunjing Ge and Armin Biere

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Solution counting and solution space integration over linear constraints are important problems with many applications. Previous works addressed either only counting integer points in polytopes (integer counting) with integer variables or alternatively only computing the volume of polytopes (solution space integration) on variables over the reals, including approximating the integer count via a polytope’s volume. We are not aware of a non-trivial algorithm which addresses the mixed case, where linear constraints are over mixed integer and real variables. In this paper, we propose a new randomized algorithm to approximate guarantees (bounds) of integer solution counts. Then we present upper and lower bounds for solution space integration over mixed-integer linear constraints. Thus, proposed algorithms can be extended to mixed-integer cases as well. The experiments show that approximations are often very close to exact results in practice, and bounds approximated by our algorithm are often tight and useful.

Cite as

Cunjing Ge and Armin Biere. Improved Bounds of Integer Solution Counts via Volume and Extending to Mixed-Integer Linear Constraints. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ge_et_al:LIPIcs.CP.2024.13,
  author =	{Ge, Cunjing and Biere, Armin},
  title =	{{Improved Bounds of Integer Solution Counts via Volume and Extending to Mixed-Integer Linear Constraints}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.13},
  URN =		{urn:nbn:de:0030-drops-206983},
  doi =		{10.4230/LIPIcs.CP.2024.13},
  annote =	{Keywords: Integer Solution Counting, Mixed-Integer Linear Constraints, #SMT(LA) Problems, Volume of Polytopes}
}
Document
Constraint Modelling with LLMs Using In-Context Learning

Authors: Kostis Michailidis, Dimos Tsouros, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We present different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities.

Cite as

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-Context Learning. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 20:1-20:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{michailidis_et_al:LIPIcs.CP.2024.20,
  author =	{Michailidis, Kostis and Tsouros, Dimos and Guns, Tias},
  title =	{{Constraint Modelling with LLMs Using In-Context Learning}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{20:1--20:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20},
  URN =		{urn:nbn:de:0030-drops-207053},
  doi =		{10.4230/LIPIcs.CP.2024.20},
  annote =	{Keywords: Constraint Modelling, Constraint Acquisition, Constraint Programming, Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recognition, Retrieval-Augmented Generation, Optimisation}
}
Document
Hierarchical Stochastic SAT and Quality Assessment of Logic Locking

Authors: Christoph Scholl, Tobias Seufert, and Fabian Siegwolf

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Motivated by the application of quality assessment of logic locking we introduce Hierarchical Stochastic SAT (HSSAT) which generalizes Stochastic SAT (SSAT). We look into the complexity of HSSAT and for solving HSSAT formulas we provide a prototype solver which computes exact evaluation results (i.e., without any approximation and without any imprecision caused by numerical rounding errors). Finally, we perform an intensive experimental evaluation of our HSSAT solver in the context of quality assessment of logic locking.

Cite as

Christoph Scholl, Tobias Seufert, and Fabian Siegwolf. Hierarchical Stochastic SAT and Quality Assessment of Logic Locking. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scholl_et_al:LIPIcs.SAT.2024.24,
  author =	{Scholl, Christoph and Seufert, Tobias and Siegwolf, Fabian},
  title =	{{Hierarchical Stochastic SAT and Quality Assessment of Logic Locking}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{24:1--24:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.24},
  URN =		{urn:nbn:de:0030-drops-205462},
  doi =		{10.4230/LIPIcs.SAT.2024.24},
  annote =	{Keywords: Stochastic Boolean Satisfiability, Hierarchical Stochastic SAT, Binary Decision Diagrams, Decision Procedure}
}
Document
Track A: Algorithms, Complexity and Games
Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games

Authors: Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, and Giovanna Varricchio

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A decade ago, Gerhard Woeginger posed an open problem that became well-known as "Woeginger’s Hiking Problem": Consider a group of n people that want to go hiking; everyone expresses preferences over the size of their hiking group in the form of an interval between 1 and n. Is it possible to efficiently assign the n people to a set of hiking subgroups so that every person approves the size of their assigned subgroup? The problem is also known as efficiently deciding if an instance of an anonymous Hedonic Game with interval approval preferences admits a wonderful partition. We resolve the open problem in the affirmative by presenting an O(n⁵) time algorithm for Woeginger’s Hiking Problem. Our solution is based on employing a dynamic programming approach for a specific rectangle stabbing problem from computational geometry. Moreover, we propose natural, more demanding extensions of the problem, e.g., maximizing the number of satisfied participants and variants with single-peaked preferences, and show that they are also efficiently solvable. Last but not least, we employ our solution to efficiently compute a partition that maximizes the egalitarian welfare for anonymous single-peaked Hedonic Games.

Cite as

Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, and Giovanna Varricchio. Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 48:1-48:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{constantinescu_et_al:LIPIcs.ICALP.2024.48,
  author =	{Constantinescu, Andrei and Lenzner, Pascal and Reiffenh\"{a}user, Rebecca and Schmand, Daniel and Varricchio, Giovanna},
  title =	{{Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{48:1--48:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.48},
  URN =		{urn:nbn:de:0030-drops-201910},
  doi =		{10.4230/LIPIcs.ICALP.2024.48},
  annote =	{Keywords: Algorithmic Game Theory, Dynamic Programming, Anonymous Hedonic Games, Single-Peaked Preferences, Social Optimum, Wonderful Partitions}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Characterising and Verifying the Core in Concurrent Multi-Player Mean-Payoff Games

Authors: Julian Gutierrez, Anthony W. Lin, Muhammad Najib, Thomas Steeples, and Michael Wooldridge

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
Concurrent multi-player mean-payoff games are important models for systems of agents with individual, non-dichotomous preferences. Whilst these games have been extensively studied in terms of their equilibria in non-cooperative settings, this paper explores an alternative solution concept: the core from cooperative game theory. This concept is particularly relevant for cooperative AI systems, as it enables the modelling of cooperation among agents, even when their goals are not fully aligned. Our contribution is twofold. First, we provide a characterisation of the core using discrete geometry techniques and establish a necessary and sufficient condition for its non-emptiness. We then use the characterisation to prove the existence of polynomial witnesses in the core. Second, we use the existence of such witnesses to solve key decision problems in rational verification and provide tight complexity bounds for the problem of checking whether some/every equilibrium in a game satisfies a given LTL or GR(1) specification. Our approach is general and can be adapted to handle other specifications expressed in various fragments of LTL without incurring additional computational costs.

Cite as

Julian Gutierrez, Anthony W. Lin, Muhammad Najib, Thomas Steeples, and Michael Wooldridge. Characterising and Verifying the Core in Concurrent Multi-Player Mean-Payoff Games. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 32:1-32:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gutierrez_et_al:LIPIcs.CSL.2024.32,
  author =	{Gutierrez, Julian and Lin, Anthony W. and Najib, Muhammad and Steeples, Thomas and Wooldridge, Michael},
  title =	{{Characterising and Verifying the Core in Concurrent Multi-Player Mean-Payoff Games}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{32:1--32:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.32},
  URN =		{urn:nbn:de:0030-drops-196752},
  doi =		{10.4230/LIPIcs.CSL.2024.32},
  annote =	{Keywords: Concurrent games, multi-agent systems, temporal logic, game theory}
}
Document
Giving Instructions in Linear Temporal Logic

Authors: Julian Gutierrez, Sarit Kraus, Giuseppe Perelli, and Michael Wooldridge

Published in: LIPIcs, Volume 247, 29th International Symposium on Temporal Representation and Reasoning (TIME 2022)


Abstract
Our aim is to develop a formal semantics for giving instructions to taskable agents, to investigate the complexity of decision problems relating to these semantics, and to explore the issues that these semantics raise. In the setting we consider, agents are given instructions in the form of Linear Temporal Logic (LTL) formulae; the intuitive interpretation of such an instruction is that the agent should act in such a way as to ensure the formula is satisfied. At the same time, agents are assumed to have inviolable and immutable background safety requirements, also specified as LTL formulae. Finally, the actions performed by an agent are assumed to have costs, and agents must act within a limited budget. For this setting, we present a range of interpretations of an instruction to achieve an LTL task Υ, intuitively ranging from "try to do this but only if you can do so with everything else remaining unchanged" up to "drop everything and get this done." For each case we present a formal pre-/post-condition semantics, and investigate the computational issues that they raise.

Cite as

Julian Gutierrez, Sarit Kraus, Giuseppe Perelli, and Michael Wooldridge. Giving Instructions in Linear Temporal Logic. In 29th International Symposium on Temporal Representation and Reasoning (TIME 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 247, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gutierrez_et_al:LIPIcs.TIME.2022.15,
  author =	{Gutierrez, Julian and Kraus, Sarit and Perelli, Giuseppe and Wooldridge, Michael},
  title =	{{Giving Instructions in Linear Temporal Logic}},
  booktitle =	{29th International Symposium on Temporal Representation and Reasoning (TIME 2022)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-262-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{247},
  editor =	{Artikis, Alexander and Posenato, Roberto and Tonetta, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2022.15},
  URN =		{urn:nbn:de:0030-drops-172622},
  doi =		{10.4230/LIPIcs.TIME.2022.15},
  annote =	{Keywords: Linear Temporal Logic, Synthesis, Game theory, Multi-Agent Systems}
}
Document
Equilibrium Design for Concurrent Games

Authors: Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
In game theory, mechanism design is concerned with the design of incentives so that a desired outcome of the game can be achieved. In this paper, we study the design of incentives so that a desirable equilibrium is obtained, for instance, an equilibrium satisfying a given temporal logic property - a problem that we call equilibrium design. We base our study on a framework where system specifications are represented as temporal logic formulae, games as quantitative concurrent game structures, and players' goals as mean-payoff objectives. In particular, we consider system specifications given by LTL and GR(1) formulae, and show that implementing a mechanism to ensure that a given temporal logic property is satisfied on some/every Nash equilibrium of the game, whenever such a mechanism exists, can be done in PSPACE for LTL properties and in NP/Sigma^P_2 for GR(1) specifications. We also study the complexity of various related decision and optimisation problems, such as optimality and uniqueness of solutions, and show that the complexities of all such problems lie within the polynomial hierarchy. As an application, equilibrium design can be used as an alternative solution to the rational synthesis and verification problems for concurrent games with mean-payoff objectives whenever no solution exists, or as a technique to repair, whenever possible, concurrent games with undesirable rational outcomes (Nash equilibria) in an optimal way.

Cite as

Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge. Equilibrium Design for Concurrent Games. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gutierrez_et_al:LIPIcs.CONCUR.2019.22,
  author =	{Gutierrez, Julian and Najib, Muhammad and Perelli, Giuseppe and Wooldridge, Michael},
  title =	{{Equilibrium Design for Concurrent Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.22},
  URN =		{urn:nbn:de:0030-drops-109246},
  doi =		{10.4230/LIPIcs.CONCUR.2019.22},
  annote =	{Keywords: Games, Temporal logic, Synthesis, Model checking, Nash equilibrium}
}
Document
Game Theory in AI, Logic, and Algorithms (Dagstuhl Seminar 17111)

Authors: Swarat Chaudhuri, Sampath Kannan, Rupak Majumdar, and Michael J. Wooldridge

Published in: Dagstuhl Reports, Volume 7, Issue 3 (2017)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17111 "Game Theory in AI, Logic, and Algorithms".

Cite as

Swarat Chaudhuri, Sampath Kannan, Rupak Majumdar, and Michael J. Wooldridge. Game Theory in AI, Logic, and Algorithms (Dagstuhl Seminar 17111). In Dagstuhl Reports, Volume 7, Issue 3, pp. 27-32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{chaudhuri_et_al:DagRep.7.3.27,
  author =	{Chaudhuri, Swarat and Kannan, Sampath and Majumdar, Rupak and Wooldridge, Michael J.},
  title =	{{Game Theory in AI, Logic, and Algorithms (Dagstuhl Seminar 17111)}},
  pages =	{27--32},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{7},
  number =	{3},
  editor =	{Chaudhuri, Swarat and Kannan, Sampath and Majumdar, Rupak and Wooldridge, Michael J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.7.3.27},
  URN =		{urn:nbn:de:0030-drops-79609},
  doi =		{10.4230/DagRep.7.3.27},
  annote =	{Keywords: game theory, formal methods, logic, algorithms, equilibria, multiagent systems}
}
Document
Nash Equilibrium and Bisimulation Invariance

Authors: Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael Wooldridge

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
Game theory provides a well-established framework for the analysis of concurrent and multi-agent systems. The basic idea is that concurrent processes (agents) can be understood as corresponding to players in a game; plays represent the possible computation runs of the system; and strategies define the behaviour of agents. Typically, strategies are modelled as functions from sequences of system states to player actions. Analysing a system in such a way involves computing the set of (Nash) equilibria in the game. However, we show that, with respect to the above model of strategies---the standard model in the literature---bisimilarity does not preserve the existence of Nash equilibria. Thus, two concurrent games which are behaviourally equivalent from a semantic perspective, and which from a logical perspective satisfy the same temporal formulae, nevertheless have fundamentally different properties from a game theoretic perspective. In this paper we explore the issues raised by this discovery, and investigate three models of strategies with respect to which the existence of Nash equilibria is preserved under bisimilarity. We also use some of these models of strategies to provide new semantic foundations for logics for strategic reasoning, and investigate restricted scenarios where bisimilarity can be shown to preserve the existence of Nash equilibria with respect to the conventional model of strategies in the literature.

Cite as

Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael Wooldridge. Nash Equilibrium and Bisimulation Invariance. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gutierrez_et_al:LIPIcs.CONCUR.2017.17,
  author =	{Gutierrez, Julian and Harrenstein, Paul and Perelli, Giuseppe and Wooldridge, Michael},
  title =	{{Nash Equilibrium and Bisimulation Invariance}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.17},
  URN =		{urn:nbn:de:0030-drops-77902},
  doi =		{10.4230/LIPIcs.CONCUR.2017.17},
  annote =	{Keywords: Bisumulation, Nash equilibrium, Multiagent systems, Strategy logic}
}
  • Refine by Author
  • 7 Wooldridge, Michael
  • 5 Gutierrez, Julian
  • 3 Perelli, Giuseppe
  • 3 van der Hoek, Wiebe
  • 2 Harrenstein, Paul
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Logic and verification
  • 3 Theory of computation → Automated reasoning
  • 3 Theory of computation → Discrete optimization
  • 2 Theory of computation → Algorithmic game theory
  • 2 Theory of computation → Logic
  • Show More...

  • Refine by Keyword
  • 4 Nash equilibrium
  • 2 Normative systems
  • 2 Synthesis
  • 2 Temporal logic
  • 2 formal methods
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 11 2024
  • 2 2017
  • 1 2003
  • 1 2007
  • 1 2009
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail