7 Search Results for "Yang, Hongseok"


Document
Compiling with Arrays

Authors: David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Linear algebra computations are foundational for neural networks and machine learning, often handled through arrays. While many functional programming languages feature lists and recursion, arrays in linear algebra demand constant-time access and bulk operations. To bridge this gap, some languages represent arrays as (eager) functions instead of lists. In this paper, we connect this idea to a formal logical foundation by interpreting functions as the usual negative types from polarized type theory, and arrays as the corresponding dual positive version of the function type. Positive types are defined to have a single elimination form whose computational interpretation is pattern matching. Just like (positive) product types bind two variables during pattern matching, (positive) array types bind variables with multiplicity during pattern matching. We follow a similar approach for Booleans by introducing conditionally-defined variables. The positive formulation for the array type enables us to combine typed partial evaluation and common subexpression elimination into an elegant algorithm whose result enjoys a property we call maximal fission, which we argue can be beneficial for further optimizations. For this purpose, we present the novel intermediate representation indexed administrative normal form (A_{i}NF), which relies on the formal logical foundation of the positive formulation for the array type to facilitate maximal loop fission and subsequent optimizations. A_{i}NF is normal with regard to commuting conversion for both let-bindings and for-loops, leading to flat and maximally fissioned terms. We mechanize the translation and normalization from a simple surface language to A_{i}NF, establishing that the process terminates, preserves types, and produces maximally fissioned terms.

Cite as

David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini. Compiling with Arrays. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 33:1-33:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{richter_et_al:LIPIcs.ECOOP.2024.33,
  author =	{Richter, David and B\"{o}hler, Timon and Weisenburger, Pascal and Mezini, Mira},
  title =	{{Compiling with Arrays}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{33:1--33:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.33},
  URN =		{urn:nbn:de:0030-drops-208823},
  doi =		{10.4230/LIPIcs.ECOOP.2024.33},
  annote =	{Keywords: array languages, functional programming, domain-specific languages, normalization by evaluation, common subexpression elimination, polarity, positive function type, intrinsic types}
}
Document
A Generalised Union of Rely-Guarantee and Separation Logic Using Permission Algebras

Authors: Vincent Jackson, Toby Murray, and Christine Rizkallah

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
This paper describes GenRGSep, an Isabelle/HOL library for the development of RGSep logics using a general algebraic state model. In particular, we develop an algebraic state models based on resource algebras that assume neither the presence of unit resources or the cancellativity law. If a new resource model is required, its components need only be proven an instance of a permission algebra, and then they can be composed together using tuples and functions. The proof of soundness is performed by Vafeiadis' operational soundness method. This method was originally formulated with respect to a concrete heap model. This paper adapts it to account for the absence of both units as well as the cancellativity law.

Cite as

Vincent Jackson, Toby Murray, and Christine Rizkallah. A Generalised Union of Rely-Guarantee and Separation Logic Using Permission Algebras. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jackson_et_al:LIPIcs.ITP.2024.23,
  author =	{Jackson, Vincent and Murray, Toby and Rizkallah, Christine},
  title =	{{A Generalised Union of Rely-Guarantee and Separation Logic Using Permission Algebras}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.23},
  URN =		{urn:nbn:de:0030-drops-207510},
  doi =		{10.4230/LIPIcs.ITP.2024.23},
  annote =	{Keywords: verification, concurrency, rely-guarantee, separation logic, resource algebras}
}
Document
Completeness of Asynchronous Session Tree Subtyping in Coq

Authors: Burak Ekici and Nobuko Yoshida

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Multiparty session types (MPST) serve as a foundational framework for formally specifying and verifying message passing protocols. Asynchronous subtyping in MPST allows for typing optimised programs preserving type safety and deadlock freedom under asynchronous interactions where the message order is preserved and sending is non-blocking. The optimisation is obtained by message reordering, which allows for sending messages earlier or receiving them later. Sound subtyping algorithms have been extensively studied and implemented as part of various programming languages and tools including C, Rust and C-MPI. However, formalising all such permutations under sequencing, selection, branching and recursion in session types is an intricate task. Additionally, checking asynchronous subtyping has been proven to be undecidable. This paper introduces the first formalisation of asynchronous subtyping in MPST within the Coq proof assistant. We first decompose session types into session trees that do not involve branching and selection, and then establish a coinductive refinement relation over them to govern subtyping. To showcase our formalisation, we prove example subtyping schemas that appear in the literature, all of which cannot be verified, at the same time, by any of the existing decidable sound algorithms. Additionally, we take the (inductive) negation of the refinement relation from a prior work by Ghilezan et al. [Ghilezan et al., 2023] and re-implement it, significantly reducing the number of rules (from eighteen to eight). We establish the completeness of subtyping with respect to its negation in Coq, addressing the issues concerning the negation rules outlined in the previous work [Ghilezan et al., 2023]. In the formalisation, we use the greatest fixed point of the least fixed point technique, facilitated by the paco library, to define coinductive predicates. We employ parametrised coinduction to prove their properties. The formalisation consists of roughly 10K lines of Coq code, accessible at: https://github.com/ekiciburak/sessionTreeST/tree/itp2024.

Cite as

Burak Ekici and Nobuko Yoshida. Completeness of Asynchronous Session Tree Subtyping in Coq. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ekici_et_al:LIPIcs.ITP.2024.13,
  author =	{Ekici, Burak and Yoshida, Nobuko},
  title =	{{Completeness of Asynchronous Session Tree Subtyping in Coq}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.13},
  URN =		{urn:nbn:de:0030-drops-207418},
  doi =		{10.4230/LIPIcs.ITP.2024.13},
  annote =	{Keywords: asynchronous multiparty session types, session trees, subtyping, Coq}
}
Document
Invited Talk
Some Semantic Issues in Probabilistic Programming Languages (Invited Talk)

Authors: Hongseok Yang

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
This is a slightly extended abstract of my talk at FSCD'19 about probabilistic programming and a few semantic issues on it. The main purpose of this abstract is to provide keywords and references on the work mentioned in my talk, and help interested audience to do follow-up study.

Cite as

Hongseok Yang. Some Semantic Issues in Probabilistic Programming Languages (Invited Talk). In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 4:1-4:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{yang:LIPIcs.FSCD.2019.4,
  author =	{Yang, Hongseok},
  title =	{{Some Semantic Issues in Probabilistic Programming Languages}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{4:1--4:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.4},
  URN =		{urn:nbn:de:0030-drops-105118},
  doi =		{10.4230/LIPIcs.FSCD.2019.4},
  annote =	{Keywords: Probabilistic Programming, Denotational Semantics, Non-differentiable Models, Bayesian Nonparametrics, Exchangeability}
}
Document
The Beta-Bernoulli process and algebraic effects

Authors: Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In this paper we use the framework of algebraic effects from programming language theory to analyze the Beta-Bernoulli process, a standard building block in Bayesian models. Our analysis reveals the importance of abstract data types, and two types of program equations, called commutativity and discardability. We develop an equational theory of terms that use the Beta-Bernoulli process, and show that the theory is complete with respect to the measure-theoretic semantics, and also in the syntactic sense of Post. Our analysis has a potential for being generalized to other stochastic processes relevant to Bayesian modelling, yielding new understanding of these processes from the perspective of programming.

Cite as

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. The Beta-Bernoulli process and algebraic effects. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 141:1-141:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{staton_et_al:LIPIcs.ICALP.2018.141,
  author =	{Staton, Sam and Stein, Dario and Yang, Hongseok and Ackerman, Nathanael L. and Freer, Cameron E. and Roy, Daniel M.},
  title =	{{The Beta-Bernoulli process and algebraic effects}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{141:1--141:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.141},
  URN =		{urn:nbn:de:0030-drops-91456},
  doi =		{10.4230/LIPIcs.ICALP.2018.141},
  annote =	{Keywords: Beta-Bernoulli process, Algebraic effects, Probabilistic programming, Exchangeability}
}
Document
Invited Talk
Probabilistic Programming (Invited Talk)

Authors: Hongseok Yang

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
Probabilistic programming refers to the idea of using standard programming constructs for specifying probabilistic models from machine learning and statistics, and employing generic inference algorithms for answering various queries on these models, such as posterior inference and estimation of model evidence. Although this idea itself is not new and was, in fact, explored by several programming-language and statistics researchers in the early 2000, it is only in the last few years that probabilistic programming has gained a large amount of attention among researchers in machine learning and programming languages, and that expressive and efficient probabilistic programming systems (such as Anglican, Church, Figaro, Infer.net, PSI, PyMC, Stan, and Venture) started to appear and have been taken up by a nontrivial number of users. The primary goal of my talk is to introduce probabilistic programming to the CONCUR/QUEST/FORMATS audience. At the end of my talk, I want the audience to understand basic results and techniques in probabilistic programming and to feel that these results and techniques are relevant or at least related to what she or he studies, although they typically come from foreign research areas, such as machine learning and statistics. My talk will contain both technical materials and lessons that I learnt from my machine-learning colleagues in Oxford, who are developing a highly-expressive higher-order probabilistic programming language, called Anglican. It will also include my work on the denotational semantics of higher-order probabilistic programming languages and their inference algorithms, which are jointly pursued with colleagues in Cambridge, Edinburgh, Oxford and Tubingen.

Cite as

Hongseok Yang. Probabilistic Programming (Invited Talk). In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{yang:LIPIcs.CONCUR.2017.3,
  author =	{Yang, Hongseok},
  title =	{{Probabilistic Programming}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.3},
  URN =		{urn:nbn:de:0030-drops-78088},
  doi =		{10.4230/LIPIcs.CONCUR.2017.3},
  annote =	{Keywords: Probabilistic programming, Machine learning, Denotational semantics}
}
Document
Algebraic Laws for Weak Consistency

Authors: Andrea Cerone, Alexey Gotsman, and Hongseok Yang

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
Modern distributed systems often rely on so called weakly consistent databases, which achieve scalability by weakening consistency guarantees of distributed transaction processing. The semantics of such databases have been formalised in two different styles, one based on abstract executions and the other based on dependency graphs. The choice between these styles has been made according to intended applications. The former has been used for specifying and verifying the implementation of the databases, while the latter for proving properties of client programs of the databases. In this paper, we present a set of novel algebraic laws (inequalities) that connect these two styles of specifications. The laws relate binary relations used in a specification based on abstract executions to those used in a specification based on dependency graphs. We then show that this algebraic connection gives rise to so called robustness criteria: conditions which ensure that a client program of a weakly consistent database does not exhibit anomalous behaviours due to weak consistency. These criteria make it easy to reason about these client programs, and may become a basis for dynamic or static program analyses. For a certain class of consistency models specifications, we prove a full abstraction result that connects the two styles of specifications.

Cite as

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Algebraic Laws for Weak Consistency. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cerone_et_al:LIPIcs.CONCUR.2017.26,
  author =	{Cerone, Andrea and Gotsman, Alexey and Yang, Hongseok},
  title =	{{Algebraic Laws for Weak Consistency}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.26},
  URN =		{urn:nbn:de:0030-drops-77946},
  doi =		{10.4230/LIPIcs.CONCUR.2017.26},
  annote =	{Keywords: Weak Consistency Models, Distributed Databases, Dependency Graphs}
}
  • Refine by Author
  • 4 Yang, Hongseok
  • 1 Ackerman, Nathanael L.
  • 1 Böhler, Timon
  • 1 Cerone, Andrea
  • 1 Ekici, Burak
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Exchangeability
  • 2 Probabilistic programming
  • 1 Algebraic effects
  • 1 Bayesian Nonparametrics
  • 1 Beta-Bernoulli process
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2024
  • 2 2017
  • 1 2018
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail