46 Search Results for "G�bel, Fabian"


Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Short Paper
Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates (Short Paper)

Authors: Fabian Löbel, Ralf Borndörfer, and Steffen Weider

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
The ongoing electrification of logistics systems and vehicle fleets increases the complexity of associated vehicle routing or scheduling problems. Battery-powered vehicles have to be scheduled to recharge in-service, and the relationship between charging time and replenished driving range is non-linear. In order to access the powerful toolkit offered by mixed-integer and linear programming techniques, this battery behavior has to be linearized. Moreover, as electric fleets grow, power draw peaks have to be avoided to save on electricity costs or to adhere to hard grid capacity limits, such that it becomes desirable to keep recharge rates dynamic. We suggest a novel linearization approach of battery charging behavior for vehicle scheduling problems, in which the recharge rates are optimization variables and not model parameters.

Cite as

Fabian Löbel, Ralf Borndörfer, and Steffen Weider. Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates (Short Paper). In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 15:1-15:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lobel_et_al:OASIcs.ATMOS.2023.15,
  author =	{L\"{o}bel, Fabian and Bornd\"{o}rfer, Ralf and Weider, Steffen},
  title =	{{Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{15:1--15:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.15},
  URN =		{urn:nbn:de:0030-drops-187765},
  doi =		{10.4230/OASIcs.ATMOS.2023.15},
  annote =	{Keywords: Electric Vehicle Scheduling, Battery Powered Vehicles, Charging Process, Non-linear Charging, Recharge Modeling, Dynamic Recharge Rate}
}
Document
Invited Talk
Deterministic Distributed Symmetry Breaking at the Example of Distributed Graph Coloring (Invited Talk)

Authors: Fabian Kuhn

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
The problem of obtaining fast deterministic algorithms for distributed symmetry breaking problems in graphs has long been considered one of the most challenging problems in the area of distributed graph algorithms. Consider for example the distributed coloring problem, where a (computer) network is modeled by an arbitrary graph G = (V,E) and the objective is to compute a vertex coloring of G by running a distributed algorithm on the graph G. It is maybe not surprising that randomization can be a helpful tool to efficiently compute such a coloring. In fact, as long as each node v ∈ V can choose among deg(v)+1 different colors, even an almost trivial algorithm in which all nodes keep trying a random available color allows to color all nodes in O(log n) parallel steps. How to obtain a similarly efficient deterministic distributed coloring algorithm is far less obvious. In fact, for a long time, there has been an exponential gap between the time complexities of the best randomized and the best deterministic distributed algorithms for various graph coloring variants and for many other basic graph problems. In the last few years, there however has been substantial progress on deterministic distributed graph algorithms that are nearly as fast as randomized algorithms for the same tasks. In particular, in a recent breakthrough, Rozhoň and Ghaffari managed to reduce the gap between the randomized and deterministic complexities of locally checkable graph problems to at most polylog n. In the talk, we give a brief overview of the history of the problem of finding fast deterministic algorithms for distributed symmetry breaking problems and of what we know about the relation between deterministic and randomized distributed algorithms for such problems. Together with some additional recent developments, the result of Rozhoň and Ghaffari provides a generic, somewhat brute-force way to efficiently derandomize randomized distributed algorithms. Apart from this, there has also been substantial progress on more direct, problem-specific algorithms. In the talk, we in particular discuss some novel deterministic distributed graph coloring algorithms. The algorithms are signficantly faster and we believe also simpler than previous algorithms for the same coloring problems.

Cite as

Fabian Kuhn. Deterministic Distributed Symmetry Breaking at the Example of Distributed Graph Coloring (Invited Talk). In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kuhn:LIPIcs.STACS.2022.3,
  author =	{Kuhn, Fabian},
  title =	{{Deterministic Distributed Symmetry Breaking at the Example of Distributed Graph Coloring}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.3},
  URN =		{urn:nbn:de:0030-drops-158131},
  doi =		{10.4230/LIPIcs.STACS.2022.3},
  annote =	{Keywords: distributed graph algorithms, derandomization, distributed coloring}
}
Document
Improved Distributed Fractional Coloring Algorithms

Authors: Alkida Balliu, Fabian Kuhn, and Dennis Olivetti

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
We prove new bounds on the distributed fractional coloring problem in the LOCAL model. A fractional c-coloring of a graph G = (V,E) is a fractional covering of the nodes of G with independent sets such that each independent set I of G is assigned a fractional value λ_I ∈ [0,1]. The total value of all independent sets of G is at most c, and for each node v ∈ V, the total value of all independent sets containing v is at least 1. Equivalently, fractional c-colorings can also be understood as multicolorings as follows. For some natural numbers p and q such that p/q ≤ c, each node v is assigned a set of at least q colors from {1,…,p} such that adjacent nodes are assigned disjoint sets of colors. The minimum c for which a fractional c-coloring of a graph G exists is called the fractional chromatic number χ_f(G) of G. Recently, [Bousquet, Esperet, and Pirot; SIROCCO '21] showed that for any constant ε > 0, a fractional (Δ+ε)-coloring can be computed in Δ^{O(Δ)} + O(Δ⋅log^* n) rounds. We show that such a coloring can be computed in only O(log² Δ) rounds, without any dependency on n. We further show that in O((log n)/ε) rounds, it is possible to compute a fractional (1+ε)χ_f(G)-coloring, even if the fractional chromatic number χ_f(G) is not known. That is, the fractional coloring problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For the standard coloring problem, it is only known that an O((log n)/(log log n))-approximation can be computed in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring approximation algorithm is best possible. We show that in trees, which have fractional chromatic number 2, computing a fractional (2+ε)-coloring requires at least Ω((log n)/ε) rounds. We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot; SIROCCO '21], it is shown that in regular grids of bounded dimension, a fractional (2+ε)-coloring can be computed in time O(log^* n). We show that such a coloring can even be computed in O(1) rounds in the LOCAL model.

Cite as

Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. Improved Distributed Fractional Coloring Algorithms. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.OPODIS.2021.18,
  author =	{Balliu, Alkida and Kuhn, Fabian and Olivetti, Dennis},
  title =	{{Improved Distributed Fractional Coloring Algorithms}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{18:1--18:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.18},
  URN =		{urn:nbn:de:0030-drops-157935},
  doi =		{10.4230/LIPIcs.OPODIS.2021.18},
  annote =	{Keywords: distributed graph algorithms, distributed coloring, locality, fractional coloring}
}
Document
Track A: Algorithms, Complexity and Games
Crossing-Optimal Extension of Simple Drawings

Authors: Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In extension problems of partial graph drawings one is given an incomplete drawing of an input graph G and is asked to complete the drawing while maintaining certain properties. A prominent area where such problems arise is that of crossing minimization. For plane drawings and various relaxations of these, there is a number of tractability as well as lower-bound results exploring the computational complexity of crossing-sensitive drawing extension problems. In contrast, comparatively few results are known on extension problems for the fundamental and broad class of simple drawings, that is, drawings in which each pair of edges intersects in at most one point. In fact, the extension problem of simple drawings has only recently been shown to be NP-hard even for inserting a single edge. In this paper we present tractability results for the crossing-sensitive extension problem of simple drawings. In particular, we show that the problem of inserting edges into a simple drawing is fixed-parameter tractable when parameterized by the number of edges to insert and an upper bound on newly created crossings. Using the same proof techniques, we are also able to answer several closely related variants of this problem, among others the extension problem for k-plane drawings. Moreover, using a different approach, we provide a single-exponential fixed-parameter algorithm for the case in which we are only trying to insert a single edge into the drawing.

Cite as

Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-Optimal Extension of Simple Drawings. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 72:1-72:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ICALP.2021.72,
  author =	{Ganian, Robert and Hamm, Thekla and Klute, Fabian and Parada, Irene and Vogtenhuber, Birgit},
  title =	{{Crossing-Optimal Extension of Simple Drawings}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{72:1--72:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.72},
  URN =		{urn:nbn:de:0030-drops-141412},
  doi =		{10.4230/LIPIcs.ICALP.2021.72},
  annote =	{Keywords: Simple drawings, Extension problems, Crossing minimization, FPT-algorithms}
}
Document
Mechanising Complexity Theory: The Cook-Levin Theorem in Coq

Authors: Lennard Gäher and Fabian Kunze

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
We mechanise the Cook-Levin theorem, i.e. the NP-completeness of SAT, in the proof assistant Coq. We use the call-by-value λ-calculus L as the model of computation to formalise time complexity, the class NP, and polynomial-time reductions. The latter two notions agree with the usual characterisations via Turing machines (TMs), as L and TMs are polynomial-time equivalent. The use of L as the computational model, as opposed to TMs, significantly eases program verification and the derivation of resource bounds. However, for showing the NP-hardness of SAT, computations of L need to be encoded in SAT, which is complicated by L’s more complex computational structure. Thus, the polynomial-time reduction chain to SAT employs TMs as an intermediate problem, for which we neatly factor out a known textbook reduction from TMs to SAT. Still, all reduction functions are implemented and analysed in L. To the best of our knowledge, this is the first result in computational complexity theory that has been mechanised with respect to any concrete computational model. We discuss what makes this area of computer science hard to mechanise and highlight the design choices which enable our mechanisations.

Cite as

Lennard Gäher and Fabian Kunze. Mechanising Complexity Theory: The Cook-Levin Theorem in Coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gaher_et_al:LIPIcs.ITP.2021.20,
  author =	{G\"{a}her, Lennard and Kunze, Fabian},
  title =	{{Mechanising Complexity Theory: The Cook-Levin Theorem in Coq}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.20},
  URN =		{urn:nbn:de:0030-drops-139154},
  doi =		{10.4230/LIPIcs.ITP.2021.20},
  annote =	{Keywords: computational model, NP completeness, Coq, Cook, Levin}
}
Document
Distributed Maximum Matching Verification in CONGEST

Authors: Mohamad Ahmadi and Fabian Kuhn

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
We study the maximum cardinality matching problem in a standard distributed setting, where the nodes V of a given n-node network graph G = (V,E) communicate over the edges E in synchronous rounds. More specifically, we consider the distributed CONGEST model, where in each round, each node of G can send an O(log n)-bit message to each of its neighbors. We show that for every graph G and a matching M of G, there is a randomized CONGEST algorithm to verify M being a maximum matching of G in time O(|M|) and disprove it in time O(D + 𝓁), where D is the diameter of G and 𝓁 is the length of a shortest augmenting path. We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to compute a maximum matching in time Õ(s^*), where s^* is the size of a maximum matching.

Cite as

Mohamad Ahmadi and Fabian Kuhn. Distributed Maximum Matching Verification in CONGEST. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ahmadi_et_al:LIPIcs.DISC.2020.37,
  author =	{Ahmadi, Mohamad and Kuhn, Fabian},
  title =	{{Distributed Maximum Matching Verification in CONGEST}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.37},
  URN =		{urn:nbn:de:0030-drops-131151},
  doi =		{10.4230/LIPIcs.DISC.2020.37},
  annote =	{Keywords: distributed matching, distributed graph algorithms, augmenting paths}
}
Document
Approximation of the Diagonal of a Laplacian’s Pseudoinverse for Complex Network Analysis

Authors: Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning Meyerhenke

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
The ubiquity of massive graph data sets in numerous applications requires fast algorithms for extracting knowledge from these data. We are motivated here by three electrical measures for the analysis of large small-world graphs G = (V, E) - i. e., graphs with diameter in O(log |V|), which are abundant in complex network analysis. From a computational point of view, the three measures have in common that their crucial component is the diagonal of the graph Laplacian’s pseudoinverse, L^+. Computing diag(L^+) exactly by pseudoinversion, however, is as expensive as dense matrix multiplication - and the standard tools in practice even require cubic time. Moreover, the pseudoinverse requires quadratic space - hardly feasible for large graphs. Resorting to approximation by, e. g., using the Johnson-Lindenstrauss transform, requires the solution of O(log |V| / ε²) Laplacian linear systems to guarantee a relative error, which is still very expensive for large inputs. In this paper, we present a novel approximation algorithm that requires the solution of only one Laplacian linear system. The remaining parts are purely combinatorial - mainly sampling uniform spanning trees, which we relate to diag(L^+) via effective resistances. For small-world networks, our algorithm obtains a ± ε-approximation with high probability, in a time that is nearly-linear in |E| and quadratic in 1 / ε. Another positive aspect of our algorithm is its parallel nature due to independent sampling. We thus provide two parallel implementations of our algorithm: one using OpenMP, one MPI + OpenMP. In our experiments against the state of the art, our algorithm (i) yields more accurate approximation results for diag(L^+), (ii) is much faster and more memory-efficient, and (iii) obtains good parallel speedups, in particular in the distributed setting.

Cite as

Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning Meyerhenke. Approximation of the Diagonal of a Laplacian’s Pseudoinverse for Complex Network Analysis. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{angriman_et_al:LIPIcs.ESA.2020.6,
  author =	{Angriman, Eugenio and Predari, Maria and van der Grinten, Alexander and Meyerhenke, Henning},
  title =	{{Approximation of the Diagonal of a Laplacian’s Pseudoinverse for Complex Network Analysis}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.6},
  URN =		{urn:nbn:de:0030-drops-128723},
  doi =		{10.4230/LIPIcs.ESA.2020.6},
  annote =	{Keywords: Laplacian pseudoinverse, electrical centrality measures, uniform spanning tree, effective resistance, parallel sampling}
}
Document
Extending Nearly Complete 1-Planar Drawings in Polynomial Time

Authors: Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
The problem of extending partial geometric graph representations such as plane graphs has received considerable attention in recent years. In particular, given a graph G, a connected subgraph H of G and a drawing H of H, the extension problem asks whether H can be extended into a drawing of G while maintaining some desired property of the drawing (e.g., planarity). In their breakthrough result, Angelini et al. [ACM TALG 2015] showed that the extension problem is polynomial-time solvable when the aim is to preserve planarity. Very recently we considered this problem for partial 1-planar drawings [ICALP 2020], which are drawings in the plane that allow each edge to have at most one crossing. The most important question identified and left open in that work is whether the problem can be solved in polynomial time when H can be obtained from G by deleting a bounded number of vertices and edges. In this work, we answer this question positively by providing a constructive polynomial-time decision algorithm.

Cite as

Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending Nearly Complete 1-Planar Drawings in Polynomial Time. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.MFCS.2020.31,
  author =	{Eiben, Eduard and Ganian, Robert and Hamm, Thekla and Klute, Fabian and N\"{o}llenburg, Martin},
  title =	{{Extending Nearly Complete 1-Planar Drawings in Polynomial Time}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.31},
  URN =		{urn:nbn:de:0030-drops-126998},
  doi =		{10.4230/LIPIcs.MFCS.2020.31},
  annote =	{Keywords: Extension problems, 1-planarity}
}
Document
Track A: Algorithms, Complexity and Games
Extending Partial 1-Planar Drawings

Authors: Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Algorithmic extension problems of partial graph representations such as planar graph drawings or geometric intersection representations are of growing interest in topological graph theory and graph drawing. In such an extension problem, we are given a tuple (G,H,ℋ) consisting of a graph G, a connected subgraph H of G and a drawing ℋ of H, and the task is to extend ℋ into a drawing of G while maintaining some desired property of the drawing, such as planarity. In this paper we study the problem of extending partial 1-planar drawings, which are drawings in the plane that allow each edge to have at most one crossing. In addition we consider the subclass of IC-planar drawings, which are 1-planar drawings with independent crossings. Recognizing 1-planar graphs as well as IC-planar graphs is NP-complete and the NP-completeness easily carries over to the extension problem. Therefore, our focus lies on establishing the tractability of such extension problems in a weaker sense than polynomial-time tractability. Here, we show that both problems are fixed-parameter tractable when parameterized by the number of edges missing from H, i.e., the edge deletion distance between H and G. The second part of the paper then turns to a more powerful parameterization which is based on measuring the vertex+edge deletion distance between the partial and complete drawing, i.e., the minimum number of vertices and edges that need to be deleted to obtain H from G.

Cite as

Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending Partial 1-Planar Drawings. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 43:1-43:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.ICALP.2020.43,
  author =	{Eiben, Eduard and Ganian, Robert and Hamm, Thekla and Klute, Fabian and N\"{o}llenburg, Martin},
  title =	{{Extending Partial 1-Planar Drawings}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{43:1--43:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.43},
  URN =		{urn:nbn:de:0030-drops-124509},
  doi =		{10.4230/LIPIcs.ICALP.2020.43},
  annote =	{Keywords: Extension problems, 1-planarity, parameterized algorithms}
}
Document
Computing β-Stretch Paths in Drawings of Graphs

Authors: Esther M. Arkin, Faryad Darabi Sahneh, Alon Efrat, Fabian Frank, Radoslav Fulek, Stephen Kobourov, and Joseph S. B. Mitchell

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π=f(P), is β-stretch if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p∈P and q∈P, the length of the sub-curve of π connecting f(p) with f(q) is at most β||f(p)-f(q)‖, where ‖.‖ denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a β-stretch path P connecting s and t. The βSP also asks that we output P if it exists. The βSP quantifies a notion of "near straightness" for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes. We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ε>0, β∈O(poly(log |V(G)|)), and s,t∈V(G), outputs a β-stretch path between s and t, if a (1-ε)β-stretch path between s and t exists in the drawing.

Cite as

Esther M. Arkin, Faryad Darabi Sahneh, Alon Efrat, Fabian Frank, Radoslav Fulek, Stephen Kobourov, and Joseph S. B. Mitchell. Computing β-Stretch Paths in Drawings of Graphs. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{arkin_et_al:LIPIcs.SWAT.2020.7,
  author =	{Arkin, Esther M. and Sahneh, Faryad Darabi and Efrat, Alon and Frank, Fabian and Fulek, Radoslav and Kobourov, Stephen and Mitchell, Joseph S. B.},
  title =	{{Computing \beta-Stretch Paths in Drawings of Graphs}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.7},
  URN =		{urn:nbn:de:0030-drops-122540},
  doi =		{10.4230/LIPIcs.SWAT.2020.7},
  annote =	{Keywords: stretch factor, dilation, geometric spanners}
}
Document
Distributed Approximate Maximum Matching in the CONGEST Model

Authors: Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
We study distributed algorithms for the maximum matching problem in the CONGEST model, where each message must be bounded in size. We give new deterministic upper bounds, and a new lower bound on the problem. We begin by giving a distributed algorithm that computes an exact maximum (unweighted) matching in bipartite graphs, in O(n log n) rounds. Next, we give a distributed algorithm that approximates the fractional weighted maximum matching problem in general graphs. In a graph with maximum degree at most Delta, the algorithm computes a (1-epsilon)-approximation for the problem in time O(log(Delta W)/epsilon^2), where W is a bound on the ratio between the largest and the smallest edge weight. Next, we show a slightly improved and generalized version of the deterministic rounding algorithm of Fischer [DISC '17]. Given a fractional weighted maximum matching solution of value f for a given graph G, we show that in time O((log^2(Delta)+log^*n)/epsilon), the fractional solution can be turned into an integer solution of value at least (1-epsilon)f for bipartite graphs and (1-epsilon) * (g-1)/g * f for general graphs, where g is the length of the shortest odd cycle of G. Together with the above fractional maximum matching algorithm, this implies a deterministic algorithm that computes a (1-epsilon)* (g-1)/g-approximation for the weighted maximum matching problem in time O(log(Delta W)/epsilon^2 + (log^2(Delta)+log^* n)/epsilon). On the lower-bound front, we show that even for unweighted fractional maximum matching in bipartite graphs, computing an (1 - O(1/sqrt{n}))-approximate solution requires at least Omega~(D+sqrt{n}) rounds in CONGEST. This lower bound requires the introduction of a new 2-party communication problem, for which we prove a tight lower bound.

Cite as

Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed Approximate Maximum Matching in the CONGEST Model. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ahmadi_et_al:LIPIcs.DISC.2018.6,
  author =	{Ahmadi, Mohamad and Kuhn, Fabian and Oshman, Rotem},
  title =	{{Distributed Approximate Maximum Matching in the CONGEST Model}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.6},
  URN =		{urn:nbn:de:0030-drops-97950},
  doi =		{10.4230/LIPIcs.DISC.2018.6},
  annote =	{Keywords: distributed graph algorithms, maximum matching, deterministic rounding, communication complexity}
}
Document
Short Paper
Gaze Sequences and Map Task Complexity (Short Paper)

Authors: Fabian Göbel, Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
As maps are visual representations of spatial context to communicate geographic information, analysis of gaze behavior is promising to improve map design. In this research we investigate the impact of map task complexity and different legend types on the visual attention of a user. With an eye tracking experiment we could show that the complexity of two map tasks can be measured and compared based on AOI sequences analysis. This knowledge can help to improve map design for static maps or in the context of interactive systems, create better map interfaces, that adapt to the user's current task.

Cite as

Fabian Göbel, Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal. Gaze Sequences and Map Task Complexity (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 30:1-30:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gobel_et_al:LIPIcs.GISCIENCE.2018.30,
  author =	{G\"{o}bel, Fabian and Kiefer, Peter and Giannopoulos, Ioannis and Raubal, Martin},
  title =	{{Gaze Sequences and Map Task Complexity}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{30:1--30:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.30},
  URN =		{urn:nbn:de:0030-drops-93587},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.30},
  annote =	{Keywords: eye tracking, sequence analysis, map task complexity}
}
Document
Sublinear Time Estimation of Degree Distribution Moments: The Degeneracy Connection

Authors: Talya Eden, Dana Ron, and C. Seshadhri

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We revisit the classic problem of estimating the degree distribution moments of an undirected graph. Consider an undirected graph G=(V,E) with n (non-isolated) vertices, and define (for s > 0) mu_s = 1\n * sum_{v in V} d^s_v. Our aim is to estimate mu_s within a multiplicative error of (1+epsilon) (for a given approximation parameter epsilon>0) in sublinear time. We consider the sparse graph model that allows access to: uniform random vertices, queries for the degree of any vertex, and queries for a neighbor of any vertex. For the case of s=1 (the average degree), \widetilde{O}(\sqrt{n}) queries suffice for any constant epsilon (Feige, SICOMP 06 and Goldreich-Ron, RSA 08). Gonen-Ron-Shavitt (SIDMA 11) extended this result to all integral s > 0, by designing an algorithms that performs \widetilde{O}(n^{1-1/(s+1)}) queries. (Strictly speaking, their algorithm approximates the number of star-subgraphs of a given size, but a slight modification gives an algorithm for moments.) We design a new, significantly simpler algorithm for this problem. In the worst-case, it exactly matches the bounds of Gonen-Ron-Shavitt, and has a much simpler proof. More importantly, the running time of this algorithm is connected to the degeneracy of G. This is (essentially) the maximum density of an induced subgraph. For the family of graphs with degeneracy at most alpha, it has a query complexity of widetilde{O}\left(\frac{n^{1-1/s}}{\mu^{1/s}_s} \Big(\alpha^{1/s} + \min\{\alpha,\mu^{1/s}_s\}\Big)\right) = \widetilde{O}(n^{1-1/s}\alpha/\mu^{1/s}_s). Thus, for the class of bounded degeneracy graphs (which includes all minor closed families and preferential attachment graphs), we can estimate the average degree in \widetilde{O}(1) queries, and can estimate the variance of the degree distribution in \widetilde{O}(\sqrt{n}) queries. This is a major improvement over the previous worst-case bounds. Our key insight is in designing an estimator for mu_s that has low variance when G does not have large dense subgraphs.

Cite as

Talya Eden, Dana Ron, and C. Seshadhri. Sublinear Time Estimation of Degree Distribution Moments: The Degeneracy Connection. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{eden_et_al:LIPIcs.ICALP.2017.7,
  author =	{Eden, Talya and Ron, Dana and Seshadhri, C.},
  title =	{{Sublinear Time Estimation of Degree Distribution Moments: The Degeneracy Connection}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.7},
  URN =		{urn:nbn:de:0030-drops-73747},
  doi =		{10.4230/LIPIcs.ICALP.2017.7},
  annote =	{Keywords: Sublinear algorithms, Degree distribution, Graph moments}
}
  • Refine by Author
  • 6 Kuhn, Fabian
  • 3 Ganian, Robert
  • 3 Hamm, Thekla
  • 3 Klute, Fabian
  • 2 Ahmadi, Mohamad
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Computational geometry
  • 3 Theory of computation → Distributed algorithms
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Applied computing → Transportation
  • Show More...

  • Refine by Keyword
  • 4 distributed graph algorithms
  • 3 Extension problems
  • 3 Kernelization
  • 3 Parameterized Complexity
  • 2 1-planarity
  • Show More...

  • Refine by Type
  • 46 document

  • Refine by Publication Year
  • 29 2017
  • 5 2020
  • 2 2018
  • 2 2021
  • 2 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail