3 Search Results for "Allocca, Carlo"


Document
Position
Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities

Authors: Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.

Cite as

Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 5:1-5:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{chen_et_al:TGDK.1.1.5,
  author =	{Chen, Jiaoyan and Dong, Hang and Hastings, Janna and Jim\'{e}nez-Ruiz, Ernesto and L\'{o}pez, Vanessa and Monnin, Pierre and Pesquita, Catia and \v{S}koda, Petr and Tamma, Valentina},
  title =	{{Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:33},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.5},
  URN =		{urn:nbn:de:0030-drops-194791},
  doi =		{10.4230/TGDK.1.1.5},
  annote =	{Keywords: Knowledge graphs, Life science, Knowledge discovery, Explainable AI}
}
Document
Position
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Authors: Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Large Language Models (LLMs) have taken Knowledge Representation - and the world - by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Cite as

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language Models and Knowledge Graphs: Opportunities and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{pan_et_al:TGDK.1.1.2,
  author =	{Pan, Jeff Z. and Razniewski, Simon and Kalo, Jan-Christoph and Singhania, Sneha and Chen, Jiaoyan and Dietze, Stefan and Jabeen, Hajira and Omeliyanenko, Janna and Zhang, Wen and Lissandrini, Matteo and Biswas, Russa and de Melo, Gerard and Bonifati, Angela and Vakaj, Edlira and Dragoni, Mauro and Graux, Damien},
  title =	{{Large Language Models and Knowledge Graphs: Opportunities and Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:38},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.2},
  URN =		{urn:nbn:de:0030-drops-194766},
  doi =		{10.4230/TGDK.1.1.2},
  annote =	{Keywords: Large Language Models, Pre-trained Language Models, Knowledge Graphs, Ontology, Retrieval Augmented Language Models}
}
Document
Short Paper
SPARQL Query Recommendation by Example: Assessing the Impact of Structural Analysis on Star-Shaped Queries

Authors: Alessandro Adamou, Carlo Allocca, Mathieu d'Aquin, and Enrico Motta

Published in: OASIcs, Volume 70, 2nd Conference on Language, Data and Knowledge (LDK 2019)


Abstract
One of the existing query recommendation strategies for unknown datasets is "by example", i.e. based on a query that the user already knows how to formulate on another dataset within a similar domain. In this paper we measure what contribution a structural analysis of the query and the datasets can bring to a recommendation strategy, to go alongside approaches that provide a semantic analysis. Here we concentrate on the case of star-shaped SPARQL queries over RDF datasets. The illustrated strategy performs a least general generalization on the given query, computes the specializations of it that are satisfiable by the target dataset, and organizes them into a graph. It then visits the graph to recommend first the reformulated queries that reflect the original query as closely as possible. This approach does not rely upon a semantic mapping between the two datasets. An implementation as part of the SQUIRE query recommendation library is discussed.

Cite as

Alessandro Adamou, Carlo Allocca, Mathieu d'Aquin, and Enrico Motta. SPARQL Query Recommendation by Example: Assessing the Impact of Structural Analysis on Star-Shaped Queries. In 2nd Conference on Language, Data and Knowledge (LDK 2019). Open Access Series in Informatics (OASIcs), Volume 70, pp. 1:1-1:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{adamou_et_al:OASIcs.LDK.2019.1,
  author =	{Adamou, Alessandro and Allocca, Carlo and d'Aquin, Mathieu and Motta, Enrico},
  title =	{{SPARQL Query Recommendation by Example: Assessing the Impact of Structural Analysis on Star-Shaped Queries}},
  booktitle =	{2nd Conference on Language, Data and Knowledge (LDK 2019)},
  pages =	{1:1--1:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-105-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{70},
  editor =	{Eskevich, Maria and de Melo, Gerard and F\"{a}th, Christian and McCrae, John P. and Buitelaar, Paul and Chiarcos, Christian and Klimek, Bettina and Dojchinovski, Milan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2019.1},
  URN =		{urn:nbn:de:0030-drops-103651},
  doi =		{10.4230/OASIcs.LDK.2019.1},
  annote =	{Keywords: SPARQL, query recommendation, query structure, dataset profiling}
}
  • Refine by Type
  • 3 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2023
  • 1 2019

  • Refine by Author
  • 2 Chen, Jiaoyan
  • 1 Adamou, Alessandro
  • 1 Allocca, Carlo
  • 1 Biswas, Russa
  • 1 Bonifati, Angela
  • Show More...

  • Refine by Series/Journal
  • 1 OASIcs
  • 2 TGDK

  • Refine by Classification
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 1 Applied computing → Life and medical sciences
  • 1 Computing methodologies → Natural language processing
  • 1 General and reference → Surveys and overviews
  • 1 Information systems → Graph-based database models
  • Show More...

  • Refine by Keyword
  • 1 Explainable AI
  • 1 Knowledge Graphs
  • 1 Knowledge discovery
  • 1 Knowledge graphs
  • 1 Large Language Models
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail