8 Search Results for "Becchetti, Luca"


Document
Smoothed Analysis of Online Metric Problems

Authors: Christian Coester and Jack Umenberger

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study three classical online problems - k-server, k-taxi, and chasing size k sets - through a lens of smoothed analysis. Our setting allows request locations to be adversarial up to small perturbations, interpolating between worst-case and average-case models. Specifically, we show that if the metric space is contained in a ball in any normed space and requests are drawn from distributions whose density functions are upper bounded by 1/σ times the uniform density over the ball, then all three problems admit polylog(k/σ)-competitive algorithms. Our approach is simple: it reduces smoothed instances to fully adversarial instances on finite metrics and leverages existing algorithms in a black-box manner. We also provide a lower bound showing that no algorithm can achieve a competitive ratio sub-polylogarithmic in k/σ, matching our upper bounds up to the exponent of the polylogarithm. In contrast, the best known competitive ratios for these problems in the fully adversarial setting are 2k-1, ∞ and Θ(k²), respectively.

Cite as

Christian Coester and Jack Umenberger. Smoothed Analysis of Online Metric Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 115:1-115:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{coester_et_al:LIPIcs.ESA.2025.115,
  author =	{Coester, Christian and Umenberger, Jack},
  title =	{{Smoothed Analysis of Online Metric Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{115:1--115:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.115},
  URN =		{urn:nbn:de:0030-drops-245847},
  doi =		{10.4230/LIPIcs.ESA.2025.115},
  annote =	{Keywords: Online Algorithms, Competitive Analysis, Smoothed Analysis, k-server, k-taxi, Metrical Service Systems}
}
Document
Track A: Algorithms, Complexity and Games
New and Improved Bounds for Markov Paging

Authors: Chirag Pabbaraju and Ali Vakilian

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In the Markov paging model, one assumes that page requests are drawn from a Markov chain over the pages in memory, and the goal is to maintain a fast cache that suffers few page faults in expectation. While computing the optimal online algorithm (OPT) for this problem naively takes time exponential in the size of the cache, the best-known polynomial-time approximation algorithm is the dominating distribution algorithm due to Lund, Phillips and Reingold (FOCS 1994), who showed that the algorithm is 4-competitive against OPT. We substantially improve their analysis and show that the dominating distribution algorithm is in fact 2-competitive against OPT. We also show a lower bound of 1.5907-competitiveness for this algorithm - to the best of our knowledge, no such lower bound was previously known.

Cite as

Chirag Pabbaraju and Ali Vakilian. New and Improved Bounds for Markov Paging. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 123:1-123:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pabbaraju_et_al:LIPIcs.ICALP.2025.123,
  author =	{Pabbaraju, Chirag and Vakilian, Ali},
  title =	{{New and Improved Bounds for Markov Paging}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{123:1--123:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.123},
  URN =		{urn:nbn:de:0030-drops-235005},
  doi =		{10.4230/LIPIcs.ICALP.2025.123},
  annote =	{Keywords: Beyond Worst-case Analyis, Online Paging, Markov Paging}
}
Document
On the Limits of Information Spread by Memory-Less Agents

Authors: Niccolò D'Archivio and Robin Vacus

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
We address the self-stabilizing bit-dissemination problem, designed to capture the challenges of spreading information and reaching consensus among entities with minimal cognitive and communication capacities. Specifically, a group of n agents is required to adopt the correct opinion, initially held by a single informed individual, choosing from two possible opinions. In order to make decisions, agents are restricted to observing the opinions of a few randomly sampled agents, and lack the ability to communicate further and to identify the informed individual. Additionally, agents cannot retain any information from one round to the next. According to a recent publication by Becchetti et al. in SODA (2024), a logarithmic convergence time without memory is achievable in the parallel setting (where agents are updated simultaneously), as long as the number of samples is at least Ω(√{n log n}). However, determining the minimal sample size for an efficient protocol to exist remains a challenging open question. As a preliminary step towards an answer, we establish the first lower bound for this problem in the parallel setting. Specifically, we demonstrate that it is impossible for any memory-less protocol with constant sample size, to converge with high probability in less than an almost-linear number of rounds. This lower bound holds even when agents are aware of both the exact value of n and their own opinion, and encompasses various simple existing dynamics designed to achieve consensus. Beyond the bit-dissemination problem, our result sheds light on the convergence time of the "minority" dynamics, the counterpart of the well-known majority rule, whose chaotic behavior is yet to be fully understood despite the apparent simplicity of the algorithm.

Cite as

Niccolò D'Archivio and Robin Vacus. On the Limits of Information Spread by Memory-Less Agents. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 18:1-18:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{darchivio_et_al:LIPIcs.DISC.2024.18,
  author =	{D'Archivio, Niccol\`{o} and Vacus, Robin},
  title =	{{On the Limits of Information Spread by Memory-Less Agents}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.18},
  URN =		{urn:nbn:de:0030-drops-212441},
  doi =		{10.4230/LIPIcs.DISC.2024.18},
  annote =	{Keywords: Opinion Dynamics, Consensus Protocols, Collective Animal Behavior, Lower Bound}
}
Document
Bond Percolation in Small-World Graphs with Power-Law Distribution

Authors: Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella Ziccardi

Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)


Abstract
Full-bond percolation with parameter p is the process in which, given a graph, for every edge independently, we keep the edge with probability p and delete it with probability 1-p. Bond percolation is studied in parallel computing and network science to understand the resilience of distributed systems to random link failure and the spread of information in networks through unreliable links. Moreover, the full-bond percolation is equivalent to the Reed-Frost process, a network version of SIR epidemic spreading. We consider one-dimensional power-law small-world graphs with parameter α obtained as the union of a cycle with additional long-range random edges: each pair of nodes {u,v} at distance L on the cycle is connected by a long-range edge {u,v}, with probability proportional to 1/L^α. Our analysis determines three phases for the percolation subgraph G_p of the small-world graph, depending on the value of α. - If α < 1, there is a p < 1 such that, with high probability, there are Ω(n) nodes that are reachable in G_p from one another in 𝒪(log n) hops; - If 1 < α < 2, there is a p < 1 such that, with high probability, there are Ω(n) nodes that are reachable in G_p from one another in log^{𝒪(1)}(n) hops; - If α > 2, for every p < 1, with high probability all connected components of G_p have size 𝒪(log n).

Cite as

Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella Ziccardi. Bond Percolation in Small-World Graphs with Power-Law Distribution. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:LIPIcs.SAND.2023.3,
  author =	{Becchetti, Luca and Clementi, Andrea and Pasquale, Francesco and Trevisan, Luca and Ziccardi, Isabella},
  title =	{{Bond Percolation in Small-World Graphs with Power-Law Distribution}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{3:1--3:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.3},
  URN =		{urn:nbn:de:0030-drops-179392},
  doi =		{10.4230/LIPIcs.SAND.2023.3},
  annote =	{Keywords: Information spreading, gossiping, epidemics, fault-tolerance, network self-organization and formation, complex systems, social and transportation networks}
}
Document
Tight Bounds for Repeated Balls-Into-Bins

Authors: Dimitrios Los and Thomas Sauerwald

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We study the repeated balls-into-bins process introduced by Becchetti, Clementi, Natale, Pasquale and Posta (2019). This process starts with m balls arbitrarily distributed across n bins. At each round t = 1,2,…, one ball is selected from each non-empty bin, and then placed it into a bin chosen independently and uniformly at random. We prove the following results: - For any n ⩽ m ⩽ poly(n), we prove a lower bound of Ω(m/n ⋅ log n) on the maximum load. For the special case m = n, this matches the upper bound of 𝒪(log n), as shown in [Luca Becchetti et al., 2019]. It also provides a positive answer to the conjecture in [Luca Becchetti et al., 2019] that for m = n the maximum load is ω(log n/ log log n) at least once in a polynomially large time interval. For m ∈ [ω(n), n log n], our new lower bound disproves the conjecture in [Luca Becchetti et al., 2019] that the maximum load remains 𝒪(log n). - For any n ⩽ m ⩽ poly(n), we prove an upper bound of 𝒪(m/n ⋅ log n) on the maximum load for all steps of a polynomially large time interval. This matches our lower bound up to multiplicative constants. - For any m ⩾ n, our analysis also implies an 𝒪(m²/n) waiting time to reach a configuration with a 𝒪(m/n ⋅ log m) maximum load, even for worst-case initial distributions. - For m ⩾ n, we show that every ball visits every bin in 𝒪(m log m) rounds. For m = n, this improves the previous upper bound of 𝒪(n log² n) in [Luca Becchetti et al., 2019]. We also prove that the upper bound is tight up to multiplicative constants for any n ⩽ m ⩽ poly(n).

Cite as

Dimitrios Los and Thomas Sauerwald. Tight Bounds for Repeated Balls-Into-Bins. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 45:1-45:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{los_et_al:LIPIcs.STACS.2023.45,
  author =	{Los, Dimitrios and Sauerwald, Thomas},
  title =	{{Tight Bounds for Repeated Balls-Into-Bins}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{45:1--45:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.45},
  URN =		{urn:nbn:de:0030-drops-176975},
  doi =		{10.4230/LIPIcs.STACS.2023.45},
  annote =	{Keywords: Repeated balls-into-bins, self-stabilizing systems, balanced allocations, potential functions, random walks}
}
Document
Step-By-Step Community Detection in Volume-Regular Graphs

Authors: Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Spectral techniques have proved amongst the most effective approaches to graph clustering. However, in general they require explicit computation of the main eigenvectors of a suitable matrix (usually the Laplacian matrix of the graph). Recent work (e.g., Becchetti et al., SODA 2017) suggests that observing the temporal evolution of the power method applied to an initial random vector may, at least in some cases, provide enough information on the space spanned by the first two eigenvectors, so as to allow recovery of a hidden partition without explicit eigenvector computations. While the results of Becchetti et al. apply to perfectly balanced partitions and/or graphs that exhibit very strong forms of regularity, we extend their approach to graphs containing a hidden k partition and characterized by a milder form of volume-regularity. We show that the class of k-volume regular graphs is the largest class of undirected (possibly weighted) graphs whose transition matrix admits k "stepwise" eigenvectors (i.e., vectors that are constant over each set of the hidden partition). To obtain this result, we highlight a connection between volume regularity and lumpability of Markov chains. Moreover, we prove that if the stepwise eigenvectors are those associated to the first k eigenvalues and the gap between the k-th and the (k+1)-th eigenvalues is sufficiently large, the Averaging dynamics of Becchetti et al. recovers the underlying community structure of the graph in logarithmic time, with high probability.

Cite as

Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo. Step-By-Step Community Detection in Volume-Regular Graphs. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 20:1-20:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:LIPIcs.ISAAC.2019.20,
  author =	{Becchetti, Luca and Cruciani, Emilio and Pasquale, Francesco and Rizzo, Sara},
  title =	{{Step-By-Step Community Detection in Volume-Regular Graphs}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{20:1--20:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.20},
  URN =		{urn:nbn:de:0030-drops-115163},
  doi =		{10.4230/LIPIcs.ISAAC.2019.20},
  annote =	{Keywords: Community detection, Distributed algorithms, Dynamics, Markov chains, Spectral analysis}
}
Document
Average Whenever You Meet: Opportunistic Protocols for Community Detection

Authors: Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale, Francesco Pasquale, Prasad Raghavendra, and Luca Trevisan

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
Consider the following asynchronous, opportunistic communication model over a graph G: in each round, one edge is activated uniformly and independently at random and (only) its two endpoints can exchange messages and perform local computations. Under this model, we study the following random process: The first time a vertex is an endpoint of an active edge, it chooses a random number, say +/- 1 with probability 1/2; then, in each round, the two endpoints of the currently active edge update their values to their average. We provide a rigorous analysis of the above process showing that, if G exhibits a two-community structure (for example, two expanders connected by a sparse cut), the values held by the nodes will collectively reflect the underlying community structure over a suitable phase of the above process. Our analysis requires new concentration bounds on the product of certain random matrices that are technically challenging and possibly of independent interest. We then exploit our analysis to design the first opportunistic protocols that approximately recover community structure using only logarithmic (or polylogarithmic, depending on the sparsity of the cut) work per node.

Cite as

Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale, Francesco Pasquale, Prasad Raghavendra, and Luca Trevisan. Average Whenever You Meet: Opportunistic Protocols for Community Detection. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:LIPIcs.ESA.2018.7,
  author =	{Becchetti, Luca and Clementi, Andrea and Manurangsi, Pasin and Natale, Emanuele and Pasquale, Francesco and Raghavendra, Prasad and Trevisan, Luca},
  title =	{{Average Whenever You Meet: Opportunistic Protocols for Community Detection}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.7},
  URN =		{urn:nbn:de:0030-drops-94705},
  doi =		{10.4230/LIPIcs.ESA.2018.7},
  annote =	{Keywords: Community Detection, Random Processes, Spectral Analysis}
}
Document
Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm

Authors: Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guidouca Schaefer, and Tjark Vredeveld

Published in: Dagstuhl Seminar Proceedings, Volume 5031, Algorithms for Optimization with Incomplete Information (2005)


Abstract
In this paper we introduce the notion of smoothed competitive analysis of online algorithms. Smoothed analysis has been proposed by Spielman and Teng to explain the behaviour of algorithms that work well in practice while performing very poorly from a worst case analysis point of view. We apply this notion to analyze the Multi-Level Feedback (MLF) algorithm to minimize the total flow time on a sequence of jobs released over time when the processing time of a job is only known at time of completion. The initial processing times are integers in the range $[1,2^K]$. We use a partial bit randomization model, i.e., the initial processing times are smoothed by changing the $k$ least significant bits under a quite general class of probability distributions. We show that MLF admits a smoothed competitive ratio of $O((2^k/\psigma)^3 + (2^k/\psigma)^2 2^{K-k}})$, where $\sigma$ denotes the standard deviation of the distribution. In particular, we obtain a competitive ratio of $O(2^{K-k})$ if $\sigma = \Theta(2^k)$. We also prove an $\Omega(2^{K-k})$ lower bound for any deterministic algorithm that is run on processing times smoothed according to the partial bit randomization model. For various other smoothing models, including the additive symmetric smoothing one, which is a variant of the model used by Spielman and Teng, we give a higher lower bound of $\Omega(2^K)$. A direct consequence of our result is also the first average case analysis of MLF. We show a constant expected ratio of the total flow time of MLF to the optimum under several distributions including the uniform one.

Cite as

Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guidouca Schaefer, and Tjark Vredeveld. Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm. In Algorithms for Optimization with Incomplete Information. Dagstuhl Seminar Proceedings, Volume 5031, pp. 5-28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{becchetti_et_al:DagSemProc.05031.7,
  author =	{Becchetti, Luca and Leonardi, Stefano and Marchetti-Spaccamela, Alberto and Schaefer, Guidouca and Vredeveld, Tjark},
  title =	{{Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm}},
  booktitle =	{Algorithms for Optimization with Incomplete Information},
  pages =	{5--28},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5031},
  editor =	{Susanne Albers and Rolf H. M\"{o}hring and Georg Ch. Pflug and R\"{u}diger Schultz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05031.7},
  URN =		{urn:nbn:de:0030-drops-752},
  doi =		{10.4230/DagSemProc.05031.7},
  annote =	{Keywords: Competitive analysis , average case analysis , smoothed analysis , scheduling}
}
  • Refine by Type
  • 8 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2024
  • 2 2023
  • 1 2019
  • 1 2018
  • Show More...

  • Refine by Author
  • 4 Becchetti, Luca
  • 3 Pasquale, Francesco
  • 2 Clementi, Andrea
  • 2 Trevisan, Luca
  • 1 Coester, Christian
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs
  • 1 DagSemProc

  • Refine by Classification
  • 3 Theory of computation → Distributed algorithms
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Online algorithms
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Mathematics of computing → Probability and statistics
  • Show More...

  • Refine by Keyword
  • 1 Beyond Worst-case Analyis
  • 1 Collective Animal Behavior
  • 1 Community Detection
  • 1 Community detection
  • 1 Competitive Analysis
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail