8 Search Results for "Bravetti, Mario"


Document
First-Order Store and Visibility in Name-Passing Calculi

Authors: Daniel Hirschkoff, Iwan Quémerais, and Davide Sangiorgi

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
The π-calculus is the paradigmatical name-passing calculus. While being purely name-passing, it allows the representation of higher-order functions and store. We study how π-calculus processes can be controlled so that computations can only involve storage of first-order values. The discipline is enforced by a type system that is based on the notion of visibility, coming from game semantics. We discuss the impact of visibility on the behavioural theory. We propose characterisations of may-testing and barbed equivalence, based on (variants of) trace equivalence and labelled bisimilarity, in the case where computation is sequential, and in the case where computation is well-bracketed.

Cite as

Daniel Hirschkoff, Iwan Quémerais, and Davide Sangiorgi. First-Order Store and Visibility in Name-Passing Calculi. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hirschkoff_et_al:LIPIcs.CONCUR.2025.23,
  author =	{Hirschkoff, Daniel and Qu\'{e}merais, Iwan and Sangiorgi, Davide},
  title =	{{First-Order Store and Visibility in Name-Passing Calculi}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{23:1--23:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.23},
  URN =		{urn:nbn:de:0030-drops-239737},
  doi =		{10.4230/LIPIcs.CONCUR.2025.23},
  annote =	{Keywords: process calculi, behavioural equivalence, type system}
}
Document
Abstract Subtyping for Asynchronous Multiparty Sessions

Authors: Laura Bocchi, Andy King, Maurizio Murgia, and Simon Thompson

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Session subtyping answers the question of whether a program in a communicating system can be safely substituted for another, when their communication behaviour is described by session types. Asynchronous session subtyping is undecidable, even for two participants, hence the interest in sound, but incomplete, subtyping algorithms. Asynchronous multiparty subtyping can be formulated by decomposing session types into single input and output types which preclude, respectively, external and internal choice. This paper shows how abstract interpretation can sit atop this approach and how it leads to an algorithm that can prove subtyping for intricate communication patterns.

Cite as

Laura Bocchi, Andy King, Maurizio Murgia, and Simon Thompson. Abstract Subtyping for Asynchronous Multiparty Sessions. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bocchi_et_al:LIPIcs.CONCUR.2025.10,
  author =	{Bocchi, Laura and King, Andy and Murgia, Maurizio and Thompson, Simon},
  title =	{{Abstract Subtyping for Asynchronous Multiparty Sessions}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.10},
  URN =		{urn:nbn:de:0030-drops-239605},
  doi =		{10.4230/LIPIcs.CONCUR.2025.10},
  annote =	{Keywords: asynchrony, session subtyping, automata, abstract interpretation}
}
Document
A Sound and Complete Characterization of Fair Asynchronous Session Subtyping

Authors: Mario Bravetti, Luca Padovani, and Gianluigi Zavattaro

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Session types are abstractions of communication protocols enabling the static analysis of message-passing processes. Refinement notions for session types are key to support safe forms of process substitution while preserving their compatibility with the rest of the system. Recently, a fair refinement relation for asynchronous session types has been defined allowing the anticipation of message outputs with respect to an unbounded number of message inputs. This refinement is useful to capture common patterns in communication protocols that take advantage of asynchrony. However, while the semantic (à la testing) definition of such refinement is straightforward, its characterization has proved to be quite challenging. In fact, only a sound but not complete characterization is known so far. In this paper we close this open problem by presenting a sound and complete characterization of asynchronous fair refinement for session types. We relate this characterization to those given in the literature for synchronous session types by leveraging a novel labelled transition system of session types that embeds their asynchronous semantics.

Cite as

Mario Bravetti, Luca Padovani, and Gianluigi Zavattaro. A Sound and Complete Characterization of Fair Asynchronous Session Subtyping. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bravetti_et_al:LIPIcs.CONCUR.2025.11,
  author =	{Bravetti, Mario and Padovani, Luca and Zavattaro, Gianluigi},
  title =	{{A Sound and Complete Characterization of Fair Asynchronous Session Subtyping}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.11},
  URN =		{urn:nbn:de:0030-drops-239615},
  doi =		{10.4230/LIPIcs.CONCUR.2025.11},
  annote =	{Keywords: Binary sessions, session types, fair asynchronous subtyping}
}
Document
Reachability in Vector Addition System with States Parameterized by Geometric Dimension

Authors: Yangluo Zheng

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
The geometric dimension of a vector addition system with states (VASS), emerged in Leroux and Schmitz (2019) and formalized by Fu, Yang, and Zheng (2024), quantifies the dimension of the vector space spanned by cycle effects in the system. This paper examines the VASS reachability problem through the lens of geometric dimension, revealing key differences from the traditional dimensional parameterization. Notably, we establish that the reachability problem for both geometrically 1-dimensional and 2-dimensional VASS is PSPACE-complete, achieved by extending the pumping technique initially proposed by Czerwiński et al. (2019).

Cite as

Yangluo Zheng. Reachability in Vector Addition System with States Parameterized by Geometric Dimension. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zheng:LIPIcs.CONCUR.2025.38,
  author =	{Zheng, Yangluo},
  title =	{{Reachability in Vector Addition System with States Parameterized by Geometric Dimension}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.38},
  URN =		{urn:nbn:de:0030-drops-239888},
  doi =		{10.4230/LIPIcs.CONCUR.2025.38},
  annote =	{Keywords: Petri net, vector addition system, reachability, geometric dimension, pumping}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs

Authors: Thomas Colcombet, Amina Doumane, and Denis Kuperberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We establish that the bisimulation invariant fragment of MSO over finite transition systems is expressively equivalent over finite transition systems to modal μ-calculus, a question that had remained open for several decades. The proof goes by translating the question to an algebraic framework, and showing that the languages of regular trees that are recognised by finitary tree algebras whose sorts zero and one are finite are the regular ones. This corresponds for trees to a weak form of the key translation of Wilke algebras to omega-semigroup over infinite words, and was also a missing piece in the algebraic theory of regular languages of infinite trees for twenty years.

Cite as

Thomas Colcombet, Amina Doumane, and Denis Kuperberg. Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 152:1-152:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.ICALP.2025.152,
  author =	{Colcombet, Thomas and Doumane, Amina and Kuperberg, Denis},
  title =	{{Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{152:1--152:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.152},
  URN =		{urn:nbn:de:0030-drops-235294},
  doi =		{10.4230/LIPIcs.ICALP.2025.152},
  annote =	{Keywords: MSO, mu-calculus, finite graphs, bisimulation, tree algebra}
}
Document
Fair Termination of Asynchronous Binary Sessions

Authors: Luca Padovani and Gianluigi Zavattaro

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
We study a theory of asynchronous session types ensuring that well-typed processes terminate under a suitable fairness assumption. Fair termination entails starvation freedom and orphan message freedom namely that all messages, including those that are produced early taking advantage of asynchrony, are eventually consumed. The theory is based on a novel fair asynchronous subtyping relation for session types that is coarser than the existing ones. The type system is also the first of its kind that is firmly rooted in linear logic: fair asynchronous subtyping is incorporated as a natural generalization of the cut and axiom rules of linear logic and asynchronous communication is modeled through a suitable set of commuting conversions and of deep cut reductions in linear logic proofs.

Cite as

Luca Padovani and Gianluigi Zavattaro. Fair Termination of Asynchronous Binary Sessions. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 24:1-24:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{padovani_et_al:LIPIcs.ECOOP.2025.24,
  author =	{Padovani, Luca and Zavattaro, Gianluigi},
  title =	{{Fair Termination of Asynchronous Binary Sessions}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{24:1--24:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.24},
  URN =		{urn:nbn:de:0030-drops-233169},
  doi =		{10.4230/LIPIcs.ECOOP.2025.24},
  annote =	{Keywords: Binary sessions, fair asynchronous subtyping, fair termination, linear logic}
}
Document
Behavioural Up/down Casting For Statically Typed Languages

Authors: Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
We provide support for polymorphism in static typestate analysis for object-oriented languages with upcasts and downcasts. Recent work has shown how typestate analysis can be embedded in the development of Java programs to obtain safer behaviour at runtime, e.g., absence of null pointer errors and protocol completion. In that approach, inheritance is supported at the price of limiting casts in source code, thus only allowing those at the beginning of the protocol, i.e., immediately after objects creation, or at the end, and in turn seriously affecting the applicability of the analysis. In this paper, we provide a solution to this open problem in typestate analysis by introducing a theory based on a richer data structure, named typestate tree, which supports upcast and downcast operations at any point of the protocol by leveraging union and intersection types. The soundness of the typestate tree-based approach has been mechanised in Coq. The theory can be applied to most object-oriented languages statically analysable through typestates, thus opening new scenarios for acceptance of programs exploiting inheritance and casting. To defend this thesis, we show an application of the theory, by embedding the typestate tree mechanism in a Java-like object-oriented language, and proving its soundness.

Cite as

Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara. Behavioural Up/down Casting For Statically Typed Languages. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 5:1-5:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bacchiani_et_al:LIPIcs.ECOOP.2024.5,
  author =	{Bacchiani, Lorenzo and Bravetti, Mario and Giunti, Marco and Mota, Jo\~{a}o and Ravara, Ant\'{o}nio},
  title =	{{Behavioural Up/down Casting For Statically Typed Languages}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{5:1--5:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.5},
  URN =		{urn:nbn:de:0030-drops-208543},
  doi =		{10.4230/LIPIcs.ECOOP.2024.5},
  annote =	{Keywords: Behavioural types, object-oriented programming, subtyping, cast, typestates}
}
Document
A Sound Algorithm for Asynchronous Session Subtyping

Authors: Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Session types, types for structuring communication between endpoints in distributed systems, are recently being integrated into mainstream programming languages. In practice, a very important notion for dealing with such types is that of subtyping, since it allows for typing larger classes of system, where a program has not precisely the expected behavior but a similar one. Unfortunately, recent work has shown that subtyping for session types in an asynchronous setting is undecidable. To cope with this negative result, the only approaches we are aware of either restrict the syntax of session types or limit communication (by considering forms of bounded asynchrony). Both approaches are too restrictive in practice, hence we proceed differently by presenting an algorithm for checking subtyping which is sound, but not complete (in some cases it terminates without returning a decisive verdict). The algorithm is based on a tree representation of the coinductive definition of asynchronous subtyping; this tree could be infinite, and the algorithm checks for the presence of finite witnesses of infinite successful subtrees. Furthermore, we provide a tool that implements our algorithm and we apply it to many examples that cannot be managed with the previous approaches.

Cite as

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A Sound Algorithm for Asynchronous Session Subtyping. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bravetti_et_al:LIPIcs.CONCUR.2019.38,
  author =	{Bravetti, Mario and Carbone, Marco and Lange, Julien and Yoshida, Nobuko and Zavattaro, Gianluigi},
  title =	{{A Sound Algorithm for Asynchronous Session Subtyping}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.38},
  URN =		{urn:nbn:de:0030-drops-109408},
  doi =		{10.4230/LIPIcs.CONCUR.2019.38},
  annote =	{Keywords: Session types, Concurrency, Subtyping, Algorithm}
}
  • Refine by Type
  • 8 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2024
  • 1 2019

  • Refine by Author
  • 3 Bravetti, Mario
  • 3 Zavattaro, Gianluigi
  • 2 Padovani, Luca
  • 1 Bacchiani, Lorenzo
  • 1 Bocchi, Laura
  • Show More...

  • Refine by Series/Journal
  • 8 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Process calculi
  • 2 Theory of computation → Type theory
  • 1 Theory of computation → Algebraic language theory
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Finite Model Theory
  • Show More...

  • Refine by Keyword
  • 2 Binary sessions
  • 2 fair asynchronous subtyping
  • 1 Algorithm
  • 1 Behavioural types
  • 1 Concurrency
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail