6 Search Results for "Chen, Weifan"


Document
Multi-Objective Memory Bandwidth Regulation and Cache Partitioning for Multicore Real-Time Systems

Authors: Binqi Sun, Zhihang Wei, Andrea Bastoni, Debayan Roy, Mirco Theile, Tomasz Kloda, Rodolfo Pellizzoni, and Marco Caccamo

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Memory bandwidth regulation and cache partitioning are widely used techniques for achieving predictable timing in real-time computing systems. Combined with partitioned scheduling, these methods require careful co-allocation of tasks and resources to cores, as task execution times strongly depend on available allocated resources. To address this challenge, this paper presents a 0-1 linear program for task-resource co-allocation, along with a multi-objective heuristic designed to minimize resource usage while guaranteeing schedulability under a preemptive EDF scheduling policy. Our heuristic employs a multi-layer framework, where an outer layer explores resource allocations using Pareto-pruned search, and an inner layer optimizes task allocation by solving a knapsack problem using dynamic programming. To evaluate the performance of the proposed optimization algorithm, we profile real-world benchmarks on an embedded AMD UltraScale+ ZCU102 platform, with fine-grained resource partitioning enabled by the Jailhouse hypervisor, leveraging cache set partitioning and MemGuard for memory bandwidth regulation. Experiments based on the benchmarking results show that the proposed 0-1 linear program outperforms existing mixed-integer programs by finding more optimal solutions within the same time limit. Moreover, the proposed multi-objective multi-layer heuristic performs consistently better than the state-of-the-art multi-resource-task co-allocation algorithm in terms of schedulability, resource usage, number of non-dominated solutions, and computational efficiency.

Cite as

Binqi Sun, Zhihang Wei, Andrea Bastoni, Debayan Roy, Mirco Theile, Tomasz Kloda, Rodolfo Pellizzoni, and Marco Caccamo. Multi-Objective Memory Bandwidth Regulation and Cache Partitioning for Multicore Real-Time Systems. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECRTS.2025.2,
  author =	{Sun, Binqi and Wei, Zhihang and Bastoni, Andrea and Roy, Debayan and Theile, Mirco and Kloda, Tomasz and Pellizzoni, Rodolfo and Caccamo, Marco},
  title =	{{Multi-Objective Memory Bandwidth Regulation and Cache Partitioning for Multicore Real-Time Systems}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.2},
  URN =		{urn:nbn:de:0030-drops-235807},
  doi =		{10.4230/LIPIcs.ECRTS.2025.2},
  annote =	{Keywords: Multi-objective optimization, memory bandwidth regulation, cache partitioning, partitioned scheduling, real-time systems}
}
Document
DAMA: A Dual Arbitration Mechanism for Mixed-Criticality Applications

Authors: Wafic Lawand and Rodolfo Pellizzoni

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
We discuss hardware resource management in mixed-criticality systems, where requestors may issue latency-critical (LTC) and non-latency-critical (NLTC) requests. LTC requests must adhere to strict latency bounds imposed by safety-critical applications, but timely servicing NLTC requests is necessary to maximize overall system performance in the average case. In this paper, we address this tradeoff for a shared memory resource by proposing DAMA, a dual arbitration mechanism that imposes an upper bound on the cumulative latency of LTC requests without unduly impacting NLTC performance. DAMA comprises a high-performance arbiter, a real-time arbiter, and a mechanism that constantly monitors the cumulative latency of requests suffered by each requestor. DAMA primarily executes in high-performance mode and only switches to real-time mode in the rare instances when its incorporated mechanism detects a violation of a task’s timing guarantee. We demonstrate the effectiveness of our arbitration scheme by adapting a predictable prefetcher that issues NLTC requests and attaching it to the L1 caches of our cores. We show both formally and experimentally that DAMA provides timing guarantees for LTC requests while processing other NLTC requests. We also demonstrate that with a negligible overhead of less than 1.5% on the cumulative latency bound of LTC requests, DAMA can achieve an equivalent average performance to a prefetcher that processes requests under a high-performance arbitration scheme.

Cite as

Wafic Lawand and Rodolfo Pellizzoni. DAMA: A Dual Arbitration Mechanism for Mixed-Criticality Applications. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 9:1-9:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lawand_et_al:LIPIcs.ECRTS.2025.9,
  author =	{Lawand, Wafic and Pellizzoni, Rodolfo},
  title =	{{DAMA: A Dual Arbitration Mechanism for Mixed-Criticality Applications}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{9:1--9:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.9},
  URN =		{urn:nbn:de:0030-drops-235875},
  doi =		{10.4230/LIPIcs.ECRTS.2025.9},
  annote =	{Keywords: Real-time Systems, Mixed-criticality Applications, Memory controllers, Prefetchers}
}
Document
H-MBR: Hypervisor-Level Memory Bandwidth Reservation for Mixed Criticality Systems

Authors: Afonso Oliveira, Diogo Costa, Gonçalo Moreira, José Martins, and Sandro Pinto

Published in: OASIcs, Volume 128, Sixth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2025)


Abstract
Recent advancements in fields such as automotive and aerospace have driven a growing demand for robust computational resources. Applications that were once designed for basic Microcontroller Units (MCUs) are now deployed on highly heterogeneous System-on-Chip (SoC) platforms. While these platforms deliver the necessary computational performance, they also present challenges related to resource sharing and predictability. These challenges are particularly pronounced when consolidating safety-critical and non-safety-critical systems, the so-called Mixed-Criticality Systems (MCS) to adhere to strict Size, Weight, Power, and Cost (SWaP-C) requirements. MCS consolidation on shared platforms requires stringent spatial and temporal isolation to comply with functional safety standards (e.g., ISO 26262). Virtualization, mainly leveraged by hypervisors, is a key technology that ensures spatial isolation across multiple OSes and applications; however ensuring temporal isolation remains challenging due to contention on shared resources, such as main memory, caches, and system buses, which impacts real-time performance and predictability. To mitigate this problem, several strategies (e.g., cache coloring and memory bandwidth reservation) have been proposed. Although cache coloring is typically implemented on state-of-the-art hypervisors, memory bandwidth reservation approaches are commonly implemented at the Linux kernel level or rely on dedicated hardware and typically do not consider the concept of Virtual Machines that can run different OSes. To fill the gap between current memory bandwidth reservation solutions and the deployment of MCSs that operate on a hypervisor, this work introduces H-MBR, an open-source VM-centric memory bandwidth reservation mechanism. H-MBR features (i) VM-centric bandwidth reservation, (ii) OS and platform agnosticism, and (iii) reduced overhead. Empirical results evidenced no overhead on non-regulated workloads, and negligible overhead (<1%) for regulated workloads for regulation periods of 2 µs or higher.

Cite as

Afonso Oliveira, Diogo Costa, Gonçalo Moreira, José Martins, and Sandro Pinto. H-MBR: Hypervisor-Level Memory Bandwidth Reservation for Mixed Criticality Systems. In Sixth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2025). Open Access Series in Informatics (OASIcs), Volume 128, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:OASIcs.NG-RES.2025.4,
  author =	{Oliveira, Afonso and Costa, Diogo and Moreira, Gon\c{c}alo and Martins, Jos\'{e} and Pinto, Sandro},
  title =	{{H-MBR: Hypervisor-Level Memory Bandwidth Reservation for Mixed Criticality Systems}},
  booktitle =	{Sixth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2025)},
  pages =	{4:1--4:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-366-9},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{128},
  editor =	{Yomsi, Patrick Meumeu and Wildermann, Stefan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.NG-RES.2025.4},
  URN =		{urn:nbn:de:0030-drops-229905},
  doi =		{10.4230/OASIcs.NG-RES.2025.4},
  annote =	{Keywords: Virtualization, Multi-core Interference, Mixed-Criticality Systems, Arm, Memory Bandwidth Reservation}
}
Artifact
Software
MCU Contention Evaluation Framework

Authors: Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso


Abstract

Cite as

Daniel Oliveira, Weifan Chen, Sandro Pinto, Renato Mancuso. MCU Contention Evaluation Framework (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-22488,
   title = {{MCU Contention Evaluation Framework}}, 
   author = {Oliveira, Daniel and Chen, Weifan and Pinto, Sandro and Mancuso, Renato},
   note = {Software, version 0.1., swhId: \href{https://archive.softwareheritage.org/swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471aa5790;origin=https://github.com/danielRep/mcu-tpa-eval;visit=swh:1:snp:0830cfc1ab9c1a89b90af8d1f5cfbd34009f6593;anchor=swh:1:rev:491481ac0a296ec2f9fa62acce39b2e717f79f46}{\texttt{swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471aa5790}} (visited on 2024-11-28)},
   url = {https://github.com/danielRep/mcu-tpa-eval},
   doi = {10.4230/artifacts.22488},
}
Document
Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Authors: Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Microcontrollers (MCUs) are steadily embracing multi-core technology to meet growing performance demands. This trend marks a shift from their traditionally simple, deterministic designs to more complex and inherently less predictable architectures. While shared resource contention is well-studied in mid to high-end embedded systems, the emergence of multi-core architectures in MCUs introduces unique challenges and characteristics that existing research has not fully explored. In this paper, we conduct an in-depth investigation of both mainstream and next-generation MCU-based platforms, aiming to identify the sources of contention on systems typically lacking these problems. We empirically demonstrate substantial contention effects across different MCU architectures (i.e., from single- to multi-core configurations), highlighting significant application slowdowns. Notably, we observe that slowdowns can reach several orders of magnitude, with the most extreme cases showing up to a 3800x (times, not percent) increase in execution time. To address these issues, we propose and evaluate muTPArtc, a novel mechanism designed for Timely Progress Assessment (TPA) and TPA-based runtime control specifically tailored to MCUs. muTPArtc is an MCU-specialized TPA-based mechanism that leverages hardware facilities widely available in commercial off-the-shelf MCUs (i.e., hardware breakpoints and cycle counters) to successfully monitor applications' progress, detect, and mitigate timing violations. Our results demonstrate that muTPArtc effectively manages performance degradation due to interference, requiring only minimal modifications to the build pipeline and no changes to the source code of the target application, while incurring minor overheads.

Cite as

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.ECRTS.2024.5,
  author =	{Oliveira, Daniel and Chen, Weifan and Pinto, Sandro and Mancuso, Renato},
  title =	{{Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.5},
  URN =		{urn:nbn:de:0030-drops-203088},
  doi =		{10.4230/LIPIcs.ECRTS.2024.5},
  annote =	{Keywords: multi-core microcontrollers, shared resources contention, progress-aware regulation}
}
Document
Low-Overhead Online Assessment of Timely Progress as a System Commodity

Authors: Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo, Sanskriti Sharma, and Renato Mancuso

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The correctness of safety-critical systems depends on both their logical and temporal behavior. Control-flow integrity (CFI) is a well-established and understood technique to safeguard the logical flow of safety-critical applications. But unfortunately, no established methodologies exist for the complementary problem of detecting violations of control flow timeliness. Worse yet, the latter dimension, which we term Timely Progress Integrity (TPI), is increasingly more jeopardized as the complexity of our embedded systems continues to soar. As key resources of the memory hierarchy become shared by several CPUs and accelerators, they become hard-to-analyze performance bottlenecks. And the precise interplay between software and hardware components becomes hard to predict and reason about. How to restore control over timely progress integrity? We postulate that the first stepping stone toward TPI is to develop methodologies for Timely Progress Assessment (TPA). TPA refers to the ability of a system to live-monitor the positive/negative slack - with respect to a known reference - at key milestones throughout an application’s lifespan. In this paper, we propose one such methodology that goes under the name of Milestone-Based Timely Progress Assessment or MB-TPA, for short. Among the key design principles of MB-TPA is the ability to operate on black-box binary executables with near-zero time overhead and implementable on commercial platforms. To prove its feasibility and effectiveness, we propose and evaluate a full-stack implementation called Timely Progress Assessment with 0 Overhead (TPAw0v). We demonstrate its capability in providing live TPA for complex vision applications while introducing less than 0.6% time overhead for applications under test. Finally, we demonstrate one use case where TPA information is used to restore TPI in the presence of temporal interference over shared memory resources.

Cite as

Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo, Sanskriti Sharma, and Renato Mancuso. Low-Overhead Online Assessment of Timely Progress as a System Commodity. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 13:1-13:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ECRTS.2023.13,
  author =	{Chen, Weifan and Izhbirdeev, Ivan and Hoornaert, Denis and Roozkhosh, Shahin and Carpanedo, Patrick and Sharma, Sanskriti and Mancuso, Renato},
  title =	{{Low-Overhead Online Assessment of Timely Progress as a System Commodity}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{13:1--13:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.13},
  URN =		{urn:nbn:de:0030-drops-180428},
  doi =		{10.4230/LIPIcs.ECRTS.2023.13},
  annote =	{Keywords: progress-aware regulation, hardware assisted runtime monitoring, timing annotation, control flow graph}
}
  • Refine by Type
  • 5 Document/PDF
  • 3 Document/HTML
  • 1 Artifact

  • Refine by Publication Year
  • 3 2025
  • 2 2024
  • 1 2023

  • Refine by Author
  • 3 Chen, Weifan
  • 3 Mancuso, Renato
  • 3 Pinto, Sandro
  • 2 Oliveira, Daniel
  • 2 Pellizzoni, Rodolfo
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 3 Computer systems organization → Real-time systems
  • 2 Computer systems organization → Embedded software
  • 1 Computer systems organization → Real-time system architecture
  • 1 Computer systems organization → Real-time system specification

  • Refine by Keyword
  • 2 progress-aware regulation
  • 1 Arm
  • 1 Memory Bandwidth Reservation
  • 1 Memory controllers
  • 1 Mixed-Criticality Systems
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail