Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)
Bruce W. Brewer and Haitao Wang. An Optimal Algorithm for Shortest Paths in Unweighted Disk Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 31:1-31:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{brewer_et_al:LIPIcs.ESA.2025.31,
author = {Brewer, Bruce W. and Wang, Haitao},
title = {{An Optimal Algorithm for Shortest Paths in Unweighted Disk Graphs}},
booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)},
pages = {31:1--31:8},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-395-9},
ISSN = {1868-8969},
year = {2025},
volume = {351},
editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.31},
URN = {urn:nbn:de:0030-drops-244997},
doi = {10.4230/LIPIcs.ESA.2025.31},
annote = {Keywords: disk graphs, weighted Voronoi diagrams, shortest paths}
}
Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)
Shinwoo An, Eunjin Oh, and Jie Xue. Single-Source Shortest Path Problem in Weighted Disk Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{an_et_al:LIPIcs.SoCG.2025.7,
author = {An, Shinwoo and Oh, Eunjin and Xue, Jie},
title = {{Single-Source Shortest Path Problem in Weighted Disk Graphs}},
booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)},
pages = {7:1--7:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-370-6},
ISSN = {1868-8969},
year = {2025},
volume = {332},
editor = {Aichholzer, Oswin and Wang, Haitao},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.7},
URN = {urn:nbn:de:0030-drops-231594},
doi = {10.4230/LIPIcs.SoCG.2025.7},
annote = {Keywords: Disk graphs, shortest path problem, compressed quadtrees}
}
Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)
J. Mark Keil and Debajyoti Mondal. The Maximum Clique Problem in a Disk Graph Made Easy. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 63:1-63:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{keil_et_al:LIPIcs.SoCG.2025.63,
author = {Keil, J. Mark and Mondal, Debajyoti},
title = {{The Maximum Clique Problem in a Disk Graph Made Easy}},
booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)},
pages = {63:1--63:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-370-6},
ISSN = {1868-8969},
year = {2025},
volume = {332},
editor = {Aichholzer, Oswin and Wang, Haitao},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.63},
URN = {urn:nbn:de:0030-drops-232155},
doi = {10.4230/LIPIcs.SoCG.2025.63},
annote = {Keywords: Geometric Intersection Graphs, Disk Graphs, Ball Graphs, Maximum Clique}
}
Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)
Anastasiia Tkachenko and Haitao Wang. Dominating Set, Independent Set, Discrete k-Center, Dispersion, and Related Problems for Planar Points in Convex Position. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 73:1-73:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{tkachenko_et_al:LIPIcs.STACS.2025.73,
author = {Tkachenko, Anastasiia and Wang, Haitao},
title = {{Dominating Set, Independent Set, Discrete k-Center, Dispersion, and Related Problems for Planar Points in Convex Position}},
booktitle = {42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
pages = {73:1--73:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-365-2},
ISSN = {1868-8969},
year = {2025},
volume = {327},
editor = {Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.73},
URN = {urn:nbn:de:0030-drops-228982},
doi = {10.4230/LIPIcs.STACS.2025.73},
annote = {Keywords: Dominating set, k-center, geometric set cover, independent set, clique, vertex cover, unit-disk graphs, convex position, dispersion, maximally separated sets}
}
Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Jared Espenant, J. Mark Keil, and Debajyoti Mondal. Finding a Maximum Clique in a Disk Graph. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{espenant_et_al:LIPIcs.SoCG.2023.30,
author = {Espenant, Jared and Keil, J. Mark and Mondal, Debajyoti},
title = {{Finding a Maximum Clique in a Disk Graph}},
booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)},
pages = {30:1--30:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-273-0},
ISSN = {1868-8969},
year = {2023},
volume = {258},
editor = {Chambers, Erin W. and Gudmundsson, Joachim},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.30},
URN = {urn:nbn:de:0030-drops-178803},
doi = {10.4230/LIPIcs.SoCG.2023.30},
annote = {Keywords: Maximum clique, Disk graph, Time complexity, APX-hardness}
}