5 Search Results for "Gesmundo, Fulvio"


Document
Fixed-Parameter Debordering of Waring Rank

Authors: Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Border complexity measures are defined via limits (or topological closures), so that any function which can approximated arbitrarily closely by low complexity functions itself has low border complexity. Debordering is the task of proving an upper bound on some non-border complexity measure in terms of a border complexity measure, thus getting rid of limits. Debordering is at the heart of understanding the difference between Valiant’s determinant vs permanent conjecture, and Mulmuley and Sohoni’s variation which uses border determinantal complexity. The debordering of matrix multiplication tensors by Bini played a pivotal role in the development of efficient matrix multiplication algorithms. Consequently, debordering finds applications in both establishing computational complexity lower bounds and facilitating algorithm design. Currently, very few debordering results are known. In this work, we study the question of debordering the border Waring rank of polynomials. Waring and border Waring rank are very well studied measures in the context of invariant theory, algebraic geometry, and matrix multiplication algorithms. For the first time, we obtain a Waring rank upper bound that is exponential in the border Waring rank and only linear in the degree. All previous known results were exponential in the degree. For polynomials with constant border Waring rank, our results imply an upper bound on the Waring rank linear in degree, which previously was only known for polynomials with border Waring rank at most 5.

Cite as

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Fixed-Parameter Debordering of Waring Rank. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.STACS.2024.30,
  author =	{Dutta, Pranjal and Gesmundo, Fulvio and Ikenmeyer, Christian and Jindal, Gorav and Lysikov, Vladimir},
  title =	{{Fixed-Parameter Debordering of Waring Rank}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.30},
  URN =		{urn:nbn:de:0030-drops-197403},
  doi =		{10.4230/LIPIcs.STACS.2024.30},
  annote =	{Keywords: border complexity, Waring rank, debordering, apolarity}
}
Document
Homogeneous Algebraic Complexity Theory and Algebraic Formulas

Authors: Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study algebraic complexity classes and their complete polynomials under homogeneous linear projections, not just under the usual affine linear projections that were originally introduced by Valiant in 1979. These reductions are weaker yet more natural from a geometric complexity theory (GCT) standpoint, because the corresponding orbit closure formulations do not require the padding of polynomials. We give the first complete polynomials for VF, the class of sequences of polynomials that admit small algebraic formulas, under homogeneous linear projections: The sum of the entries of the non-commutative elementary symmetric polynomial in 3 by 3 matrices of homogeneous linear forms. Even simpler variants of the elementary symmetric polynomial are hard for the topological closure of a large subclass of VF: the sum of the entries of the non-commutative elementary symmetric polynomial in 2 by 2 matrices of homogeneous linear forms, and homogeneous variants of the continuant polynomial (Bringmann, Ikenmeyer, Zuiddam, JACM '18). This requires a careful study of circuits with arity-3 product gates.

Cite as

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Homogeneous Algebraic Complexity Theory and Algebraic Formulas. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 43:1-43:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.ITCS.2024.43,
  author =	{Dutta, Pranjal and Gesmundo, Fulvio and Ikenmeyer, Christian and Jindal, Gorav and Lysikov, Vladimir},
  title =	{{Homogeneous Algebraic Complexity Theory and Algebraic Formulas}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{43:1--43:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-195713},
  doi =		{10.4230/LIPIcs.ITCS.2024.43},
  annote =	{Keywords: Homogeneous polynomials, Waring rank, Arithmetic formulas, Border complexity, Geometric Complexity theory, Symmetric polynomials}
}
Document
Degree-Restricted Strength Decompositions and Algebraic Branching Programs

Authors: Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer, and Vladimir Lysikov

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
We analyze Kumar’s recent quadratic algebraic branching program size lower bound proof method (CCC 2017) for the power sum polynomial. We present a refinement of this method that gives better bounds in some cases. The lower bound relies on Noether-Lefschetz type conditions on the hypersurface defined by the homogeneous polynomial. In the explicit example that we provide, the lower bound is proved resorting to classical intersection theory. Furthermore, we use similar methods to improve the known lower bound methods for slice rank of polynomials. We consider a sequence of polynomials that have been studied before by Shioda and show that for these polynomials the improved lower bound matches the known upper bound.

Cite as

Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer, and Vladimir Lysikov. Degree-Restricted Strength Decompositions and Algebraic Branching Programs. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gesmundo_et_al:LIPIcs.FSTTCS.2022.20,
  author =	{Gesmundo, Fulvio and Ghosal, Purnata and Ikenmeyer, Christian and Lysikov, Vladimir},
  title =	{{Degree-Restricted Strength Decompositions and Algebraic Branching Programs}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.20},
  URN =		{urn:nbn:de:0030-drops-174127},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.20},
  annote =	{Keywords: Lower bounds, Slice rank, Strength of polynomials, Algebraic branching programs}
}
Document
A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits

Authors: Mrinal Kumar and Ben Lee Volk

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We show that there is an equation of degree at most poly(n) for the (Zariski closure of the) set of the non-rigid matrices: that is, we show that for every large enough field 𝔽, there is a non-zero n²-variate polynomial P ∈ 𝔽[x_{1, 1}, …, x_{n, n}] of degree at most poly(n) such that every matrix M which can be written as a sum of a matrix of rank at most n/100 and a matrix of sparsity at most n²/100 satisfies P(M) = 0. This confirms a conjecture of Gesmundo, Hauenstein, Ikenmeyer and Landsberg [Fulvio Gesmundo et al., 2016] and improves the best upper bound known for this problem down from exp(n²) [Abhinav Kumar et al., 2014; Fulvio Gesmundo et al., 2016] to poly(n). We also show a similar polynomial degree bound for the (Zariski closure of the) set of all matrices M such that the linear transformation represented by M can be computed by an algebraic circuit with at most n²/200 edges (without any restriction on the depth). As far as we are aware, no such bound was known prior to this work when the depth of the circuits is unbounded. Our methods are elementary and short and rely on a polynomial map of Shpilka and Volkovich [Amir Shpilka and Ilya Volkovich, 2015] to construct low degree "universal" maps for non-rigid matrices and small linear circuits. Combining this construction with a simple dimension counting argument to show that any such polynomial map has a low degree annihilating polynomial completes the proof. As a corollary, we show that any derandomization of the polynomial identity testing problem will imply new circuit lower bounds. A similar (but incomparable) theorem was proved by Kabanets and Impagliazzo [Valentine Kabanets and Russell Impagliazzo, 2004].

Cite as

Mrinal Kumar and Ben Lee Volk. A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 9:1-9:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kumar_et_al:LIPIcs.ITCS.2021.9,
  author =	{Kumar, Mrinal and Volk, Ben Lee},
  title =	{{A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{9:1--9:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.9},
  URN =		{urn:nbn:de:0030-drops-135486},
  doi =		{10.4230/LIPIcs.ITCS.2021.9},
  annote =	{Keywords: Rigid Matrices, Linear Circuits, Degree Bounds, Circuit Lower Bounds}
}
Document
Kronecker Powers of Tensors and Strassen’s Laser Method

Authors: Austin Conner, Joseph M. Landsberg, Fulvio Gesmundo, and Emanuele Ventura

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We answer a question, posed implicitly in [P. Bürgisser et al., 1997] and explicitly in [M. Bläser, 2013], showing the border rank of the Kronecker square of the little Coppersmith-Winograd tensor is the square of the border rank of the tensor for all q>2, a negative result for complexity theory. We further show that when q>4, the analogous result holds for the Kronecker cube. In the positive direction, we enlarge the list of explicit tensors potentially useful for the laser method. We observe that a well-known tensor, the 3 × 3 determinant polynomial regarded as a tensor, det_3 ∈ C^9 ⊗ C^9 ⊗ C^9, could potentially be used in the laser method to prove the exponent of matrix multiplication is two. Because of this, we prove new upper bounds on its Waring rank and rank (both 18), border rank and Waring border rank (both 17), which, in addition to being promising for the laser method, are of interest in their own right. We discuss "skew" cousins of the little Coppersmith-Winograd tensor and indicate why they may be useful for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C^3 ⊗ C^3 ⊗ C^3.

Cite as

Austin Conner, Joseph M. Landsberg, Fulvio Gesmundo, and Emanuele Ventura. Kronecker Powers of Tensors and Strassen’s Laser Method. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 10:1-10:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{conner_et_al:LIPIcs.ITCS.2020.10,
  author =	{Conner, Austin and Landsberg, Joseph M. and Gesmundo, Fulvio and Ventura, Emanuele},
  title =	{{Kronecker Powers of Tensors and Strassen’s Laser Method}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{10:1--10:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.10},
  URN =		{urn:nbn:de:0030-drops-116956},
  doi =		{10.4230/LIPIcs.ITCS.2020.10},
  annote =	{Keywords: Matrix multiplication complexity, Tensor rank, Asymptotic rank, Laser method}
}
  • Refine by Author
  • 4 Gesmundo, Fulvio
  • 3 Ikenmeyer, Christian
  • 3 Lysikov, Vladimir
  • 2 Dutta, Pranjal
  • 2 Jindal, Gorav
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Circuit complexity

  • Refine by Keyword
  • 2 Waring rank
  • 1 Algebraic branching programs
  • 1 Arithmetic formulas
  • 1 Asymptotic rank
  • 1 Border complexity
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2024
  • 1 2020
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail