8 Search Results for "Meijer, Henk"


Document
Improved Hardness-Of-Approximation for Token-Swapping

Authors: Sam Hiken and Nicole Wein

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study the token swapping problem, in which we are given a graph with an initial assignment of one distinct token to each vertex, and a final desired assignment (again with one token per vertex). The goal is to find the minimum length sequence of swaps of adjacent tokens required to get from the initial to the final assignment. The token swapping problem is known to be NP-complete. It is also known to have a polynomial-time 4-approximation algorithm. From the hardness-of-approximation side, it is known to be NP-hard to approximate with a ratio better than 1001/1000. Our main result is an improvement of the approximation ratio of the lower bound: We show that it is NP-hard to approximate with ratio better than 14/13. We then turn our attention to the 0/1-weighted version, in which every token has a weight of either 0 or 1, and the cost of a swap is the sum of the weights of the two participating tokens. Unlike standard token swapping, no constant-factor approximation is known for this version, and we provide an explanation. We prove that 0/1-weighted token swapping is NP-hard to approximate with ratio better than (1-ε) ln(n) for any constant ε > 0. Lastly, we prove two barrier results for the standard (unweighted) token swapping problem. We show that one cannot beat the current best known approximation ratio of 4 using a large class of algorithms which includes all known algorithms, nor can one beat it using a common analysis framework.

Cite as

Sam Hiken and Nicole Wein. Improved Hardness-Of-Approximation for Token-Swapping. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 57:1-57:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hiken_et_al:LIPIcs.ESA.2025.57,
  author =	{Hiken, Sam and Wein, Nicole},
  title =	{{Improved Hardness-Of-Approximation for Token-Swapping}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{57:1--57:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.57},
  URN =		{urn:nbn:de:0030-drops-245251},
  doi =		{10.4230/LIPIcs.ESA.2025.57},
  annote =	{Keywords: algorithms, token-swapping, hardness-of-approximation, lower-bounds}
}
Document
Sliding Squares in Parallel

Authors: Hugo A. Akitaya, Sándor P. Fekete, Peter Kramer, Saba Molaei, Christian Rieck, Frederick Stock, and Tobias Wallner

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider algorithmic problems motivated by modular robotic reconfiguration in the sliding square model, in which we are given n square-shaped modules in a (labeled or unlabeled) start configuration and need to find a schedule of sliding moves to transform it into a desired goal configuration, maintaining connectivity of the configuration at all times. Recent work has aimed at minimizing the total number of moves, resulting in fully sequential schedules that can perform reconfiguration in 𝒪(n²) moves, or 𝒪(nP) for arrangements of bounding box perimeter size P. We provide first results in the sliding square model that exploit parallel motion, performing reconfiguration in worst-case optimal makespan of 𝒪(P). We also provide tight bounds on the complexity of the problem by showing that even deciding the possibility of reconfiguration within makespan 1 is NP-complete in the unlabeled case. In the labeled variant, we note that deciding the same for makespan 2 is NP-complete, while makespan 1 is straightforward.

Cite as

Hugo A. Akitaya, Sándor P. Fekete, Peter Kramer, Saba Molaei, Christian Rieck, Frederick Stock, and Tobias Wallner. Sliding Squares in Parallel. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.28,
  author =	{A. Akitaya, Hugo and Fekete, S\'{a}ndor P. and Kramer, Peter and Molaei, Saba and Rieck, Christian and Stock, Frederick and Wallner, Tobias},
  title =	{{Sliding Squares in Parallel}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.28},
  URN =		{urn:nbn:de:0030-drops-244961},
  doi =		{10.4230/LIPIcs.ESA.2025.28},
  annote =	{Keywords: Sliding squares, parallel motion, reconfigurability, motion planning, multi-agent path finding, makespan, swarm robotics, computational geometry}
}
Document
APPROX
Covering Simple Orthogonal Polygons with Rectangles

Authors: Aniket Basu Roy

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study the problem of Covering Orthogonal Polygons with Rectangles, focusing on three variants: covering the interior, the boundary, and the corners. While previous work provided constant-factor approximation algorithms for these problems, significant improvements had not been achieved for over two decades. The main contribution of this work is the development of a Polynomial Time Approximation Scheme (PTAS) for both the Boundary Cover and Corner Cover problems on simple polygons, using a local search algorithm. Our work advances the state of the art, improving upon the previous best-known 4-approximation for the Boundary Cover and 2-approximation for the Corner Cover problems. The technical core of our work lies in proving the existence of planar support graphs for certain geometric hypergraphs defined by the polygon and its containment-maximal rectangles. This structural insight enables the application of the local search framework to achieve the PTAS results. We also demonstrate the limitations of this approach by constructing instances where local search fails for the Interior Cover and certain dual problems, such as the Maximum Antirectangle and Hitting Set problems. Additionally, the methods yield a PTAS for a special case of the Discrete Independent Set problem for rectangles. These results not only settle longstanding open questions but also introduce new techniques that may be of independent interest within computational geometry.

Cite as

Aniket Basu Roy. Covering Simple Orthogonal Polygons with Rectangles. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{basuroy:LIPIcs.APPROX/RANDOM.2025.2,
  author =	{Basu Roy, Aniket},
  title =	{{Covering Simple Orthogonal Polygons with Rectangles}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.2},
  URN =		{urn:nbn:de:0030-drops-243686},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.2},
  annote =	{Keywords: Polygon Covering, Approximation Algorithms, Orthogonal Polygons, Rectangles, Local Search, Planar Supports}
}
Document
Linear Layouts of Graphs with Priority Queues

Authors: Emilio Di Giacomo, Walter Didimo, Henry Förster, Torsten Ueckerdt, and Johannes Zink

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
A linear layout of a graph consists of a linear ordering of its vertices and a partition of its edges into pages such that the edges assigned to the same page obey some constraint. The two most prominent and widely studied types of linear layouts are stack and queue layouts, in which any two edges assigned to the same page are forbidden to cross and nest, respectively. The names of these two layouts derive from the fact that, when parsing the graph according to the linear vertex ordering, the edges in a single page can be stored using a single stack or queue, respectively. Recently, the concepts of stack and queue layouts have been extended by using a double-ended queue or a restricted-input queue for storing the edges of a page. We extend this line of study to edge-weighted graphs by introducing priority queue layouts, that is, the edges on each page are stored in a priority queue whose keys are the edge weights. First, we show that there are edge-weighted graphs that require a linear number of priority queues. Second, we characterize the graphs that admit a priority queue layout with a single queue, regardless of the edge-weight function, and we provide an efficient recognition algorithm. Third, we show that the number of priority queues required independently of the edge-weight function is bounded by the pathwidth of the graph, but can be arbitrarily large already for graphs of treewidth two. Finally, we prove that determining the minimum number of priority queues is NP-complete if the linear ordering of the vertices is fixed.

Cite as

Emilio Di Giacomo, Walter Didimo, Henry Förster, Torsten Ueckerdt, and Johannes Zink. Linear Layouts of Graphs with Priority Queues. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{digiacomo_et_al:LIPIcs.WADS.2025.29,
  author =	{Di Giacomo, Emilio and Didimo, Walter and F\"{o}rster, Henry and Ueckerdt, Torsten and Zink, Johannes},
  title =	{{Linear Layouts of Graphs with Priority Queues}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.29},
  URN =		{urn:nbn:de:0030-drops-242602},
  doi =		{10.4230/LIPIcs.WADS.2025.29},
  annote =	{Keywords: linear layouts, recognition and characterization, priority queue layouts}
}
Document
Sweeping a Domain with Line-Of-Sight Between Covisible Agents

Authors: Kien C. Huynh, Joseph S. B. Mitchell, and Valentin Polishchuk

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider sweeping a polygonal domain using variable-length segments whose endpoints can be considered to be mobile agents moving with bounded speeds; a point in the domain is swept when it belongs to one of the segments. The objective is to sweep the domain as quickly as possible. We show that the problem is NP-hard even in simple polygons and even for a single segment (two agents), and give constant-factor approximation algorithms, both for simple polygons and polygons with holes. Our approximations are obtained by introducing a new type of "window partition" of the polygon, which may find other applications. For domains with holes, our results are based on a non-trivial topological argument proving a surprising fact: a connected subset of the domain, whose points are swept but not directly touched by the agents, may contain at most one hole.

Cite as

Kien C. Huynh, Joseph S. B. Mitchell, and Valentin Polishchuk. Sweeping a Domain with Line-Of-Sight Between Covisible Agents. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 39:1-39:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{huynh_et_al:LIPIcs.WADS.2025.39,
  author =	{Huynh, Kien C. and Mitchell, Joseph S. B. and Polishchuk, Valentin},
  title =	{{Sweeping a Domain with Line-Of-Sight Between Covisible Agents}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{39:1--39:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.39},
  URN =		{urn:nbn:de:0030-drops-242706},
  doi =		{10.4230/LIPIcs.WADS.2025.39},
  annote =	{Keywords: Polygon sweeping, collaborating agents, motion coordination, makespan optimization}
}
Document
A Minor-Testing Approach for Coordinated Motion Planning with Sliding Robots

Authors: Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We study a variant of the Coordinated Motion Planning problem on undirected graphs, referred to herein as the Coordinated Sliding-Motion Planning (CSMP) problem. In this variant, we are given an undirected graph G, k robots R₁,… ,R_k positioned on distinct vertices of G, p ≤ k distinct destination vertices for robots R₁,… ,R_p, and 𝓁 ∈ ℕ. The problem is to decide if there is a serial schedule of at most 𝓁 moves (i.e., of makespan 𝓁) such that at the end of the schedule each robot with a destination reaches it, where a robot’s move is a free path (unoccupied by any robots) from its current position to an unoccupied vertex. The problem is known to be NP-hard even on full grids. It has been studied in several contexts, including coin movement and reconfiguration problems, with respect to feasibility, complexity, and approximation. Geometric variants of the problem, in which congruent geometric-shape robots (e.g., unit disk/squares) slide or translate in the Euclidean plane, have also been studied extensively. We investigate the parameterized complexity of CSMP with respect to two parameters: the number k of robots and the makespan 𝓁. As our first result, we present a fixed-parameter algorithm for CSMP parameterized by k. For our second result, we present a fixed-parameter algorithm parameterized by 𝓁 for the special case of CSMP in which only a single robot has a destination and the graph is planar. A crucial new ingredient for both of our results is that the solution admits a succinct representation as a small labeled topological minor of the input graph.

Cite as

Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. A Minor-Testing Approach for Coordinated Motion Planning with Sliding Robots. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.SoCG.2025.44,
  author =	{Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ramanujan, M. S.},
  title =	{{A Minor-Testing Approach for Coordinated Motion Planning with Sliding Robots}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.44},
  URN =		{urn:nbn:de:0030-drops-231966},
  doi =		{10.4230/LIPIcs.SoCG.2025.44},
  annote =	{Keywords: coordinated motion planning on graphs, parameterized complexity, topological minor testing, planar graphs}
}
Document
Polyline Drawings with Topological Constraints

Authors: Emilio Di Giacomo, Peter Eades, Giuseppe Liotta, Henk Meijer, and Fabrizio Montecchiani

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Let G be a simple topological graph and let Gamma be a polyline drawing of G. We say that Gamma partially preserves the topology of G if it has the same external boundary, the same rotation system, and the same set of crossings as G. Drawing Gamma fully preserves the topology of G if the planarization of G and the planarization of Gamma have the same planar embedding. We show that if the set of crossing-free edges of G forms a connected spanning subgraph, then G admits a polyline drawing that partially preserves its topology and that has curve complexity at most three (i.e., at most three bends per edge). If, however, the set of crossing-free edges of G is not a connected spanning subgraph, the curve complexity may be Omega(sqrt{n}). Concerning drawings that fully preserve the topology, we show that if G has skewness k, it admits one such drawing with curve complexity at most 2k; for skewness-1 graphs, the curve complexity can be reduced to one, which is a tight bound. We also consider optimal 2-plane graphs and discuss trade-offs between curve complexity and crossing angle resolution of drawings that fully preserve the topology.

Cite as

Emilio Di Giacomo, Peter Eades, Giuseppe Liotta, Henk Meijer, and Fabrizio Montecchiani. Polyline Drawings with Topological Constraints. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 39:1-39:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{digiacomo_et_al:LIPIcs.ISAAC.2018.39,
  author =	{Di Giacomo, Emilio and Eades, Peter and Liotta, Giuseppe and Meijer, Henk and Montecchiani, Fabrizio},
  title =	{{Polyline Drawings with Topological Constraints}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{39:1--39:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.39},
  URN =		{urn:nbn:de:0030-drops-99871},
  doi =		{10.4230/LIPIcs.ISAAC.2018.39},
  annote =	{Keywords: Topological graphs, graph drawing, curve complexity, skewness-k graphs, k-planar graphs}
}
Document
Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch

Authors: Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Christian Scheffer, and Henk Meijer

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We present a number of breakthroughs for coordinated motion planning, in which the objective is to reconfigure a swarm of labeled convex objects by a combination of parallel, continuous, collision-free translations into a given target arrangement. Problems of this type can be traced back to the classic work of Schwartz and Sharir (1983), who gave a method for deciding the existence of a coordinated motion for a set of disks between obstacles; their approach is polynomial in the complexity of the obstacles, but exponential in the number of disks. Despite a broad range of other non-trivial results for multi-object motion planning, previous work has largely focused on sequential schedules, in which one robot moves at a time, with objectives such as the number of moves; attempts to minimize the overall makespan of a coordinated parallel motion schedule (with many robots moving simultaneously) have defied all attempts at establishing the complexity in the absence of obstacles, as well as the existence of efficient approximation methods. We resolve these open problems by developing a framework that provides constant-factor approximation algorithms for minimizing the execution time of a coordinated, parallel motion plan for a swarm of robots in the absence of obstacles, provided their arrangement entails some amount of separability. In fact, our algorithm achieves constant stretch factor: If all robots want to move at most d units from their respective starting positions, then the total duration of the overall schedule (and hence the distance traveled by each robot) is O(d). Various extensions include unlabeled robots and different classes of robots. We also resolve the complexity of finding a reconfiguration plan with minimal execution time by proving that this is NP-hard, even for a grid arrangement without any stationary obstacles. On the other hand, we show that for densely packed disks that cannot be well separated, a stretch factor Omega(N^{1/4}) may be required. On the positive side, we establish a stretch factor of O(N^{1/2}) even in this case. The intricate difficulties of computing precise optimal solutions are demonstrated by the seemingly simple case of just two disks, which is shown to be excruciatingly difficult to solve to optimality.

Cite as

Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Christian Scheffer, and Henk Meijer. Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.SoCG.2018.29,
  author =	{Demaine, Erik D. and Fekete, S\'{a}ndor P. and Keldenich, Phillip and Scheffer, Christian and Meijer, Henk},
  title =	{{Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.29},
  URN =		{urn:nbn:de:0030-drops-87423},
  doi =		{10.4230/LIPIcs.SoCG.2018.29},
  annote =	{Keywords: Robot swarms, coordinated motion planning, parallel motion, makespan, bounded stretch, complexity, approximation}
}
  • Refine by Type
  • 8 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 2 2018

  • Refine by Author
  • 2 Di Giacomo, Emilio
  • 2 Fekete, Sándor P.
  • 2 Meijer, Henk
  • 1 A. Akitaya, Hugo
  • 1 Basu Roy, Aniket
  • Show More...

  • Refine by Series/Journal
  • 8 LIPIcs

  • Refine by Classification
  • 2 Mathematics of computing → Graph theory
  • 2 Theory of computation → Computational geometry
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Computing methodologies → Motion path planning
  • 1 Mathematics of computing → Combinatorics
  • Show More...

  • Refine by Keyword
  • 2 makespan
  • 2 parallel motion
  • 1 Approximation Algorithms
  • 1 Local Search
  • 1 Orthogonal Polygons
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail