3 Search Results for "Rafiey, Akbar"


Document
The Ideal Membership Problem and Abelian Groups

Authors: Andrei A. Bulatov and Akbar Rafiey

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
Given polynomials f_0, f_1, …, f_k the Ideal Membership Problem, IMP for short, asks if f₀ belongs to the ideal generated by f_1, …, f_k. In the search version of this problem the task is to find a proof of this fact. The IMP is a well-known fundamental problem with numerous applications, for instance, it underlies many proof systems based on polynomials such as Nullstellensatz, Polynomial Calculus, and Sum-of-Squares. Although the IMP is in general intractable, in many important cases it can be efficiently solved. Mastrolilli [SODA'19] initiated a systematic study of IMPs for ideals arising from Constraint Satisfaction Problems (CSPs), parameterized by constraint languages, denoted IMP(Γ). The ultimate goal of this line of research is to classify all such IMPs accordingly to their complexity. Mastrolilli achieved this goal for IMPs arising from CSP(Γ) where Γ is a Boolean constraint language, while Bulatov and Rafiey [arXiv'21] advanced these results to several cases of CSPs over finite domains. In this paper we consider IMPs arising from CSPs over "affine" constraint languages, in which constraints are subgroups (or their cosets) of direct products of Abelian groups. This kind of CSPs include systems of linear equations and are considered one of the most important types of tractable CSPs. Some special cases of the problem have been considered before by Bharathi and Mastrolilli [MFCS'21] for linear equation modulo 2, and by Bulatov and Rafiey [arXiv'21] to systems of linear equations over GF(p), p prime. Here we prove that if Γ is an affine constraint language then IMP(Γ) is solvable in polynomial time assuming the input polynomial has bounded degree.

Cite as

Andrei A. Bulatov and Akbar Rafiey. The Ideal Membership Problem and Abelian Groups. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bulatov_et_al:LIPIcs.STACS.2022.18,
  author =	{Bulatov, Andrei A. and Rafiey, Akbar},
  title =	{{The Ideal Membership Problem and Abelian Groups}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.18},
  URN =		{urn:nbn:de:0030-drops-158280},
  doi =		{10.4230/LIPIcs.STACS.2022.18},
  annote =	{Keywords: Polynomial Ideal Membership, Constraint Satisfaction Problems, Polymorphisms, Gr\"{o}bner Bases, Abelian Groups}
}
Document
Ideal Membership Problem for Boolean Minority and Dual Discriminator

Authors: Arpitha P. Bharathi and Monaldo Mastrolilli

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
The polynomial Ideal Membership Problem (IMP) tests if an input polynomial f ∈ 𝔽[x_1,… ,x_n] with coefficients from a field 𝔽 belongs to a given ideal I ⊆ 𝔽[x_1,… ,x_n]. It is a well-known fundamental problem with many important applications, though notoriously intractable in the general case. In this paper we consider the IMP for polynomial ideals encoding combinatorial problems and where the input polynomial f has degree at most d = O(1) (we call this problem IMP_d). A dichotomy result between "hard" (NP-hard) and "easy" (polynomial time) IMPs was achieved for Constraint Satisfaction Problems over finite domains [Andrei A. Bulatov, 2017; Dmitriy Zhuk, 2020] (this is equivalent to IMP_0) and IMP_d for the Boolean domain [Mastrolilli, 2019], both based on the classification of the IMP through functions called polymorphisms. For the latter result, there are only six polymorphisms to be studied in order to achieve a full dichotomy result for the IMP_d. The complexity of the IMP_d for five of these polymorphisms has been solved in [Mastrolilli, 2019] whereas for the ternary minority polymorphism it was incorrectly declared in [Mastrolilli, 2019] to have been resolved by a previous result. In this paper we provide the missing link by proving that the IMP_d for Boolean combinatorial ideals whose constraints are closed under the minority polymorphism can be solved in polynomial time. This completes the identification of the precise borderline of tractability for the IMP_d for constrained problems over the Boolean domain. We also prove that the proof of membership for the IMP_d for problems constrained by the dual discriminator polymorphism over any finite domain can also be found in polynomial time. Bulatov and Rafiey [Andrei A. Bulatov and Akbar Rafiey, 2020] recently proved that the IMP_d for this polymorphism is decidable in polynomial time, without needing a proof of membership. Our result gives a proof of membership and can be used in applications such as Nullstellensatz and Sum-of-Squares proofs.

Cite as

Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal Membership Problem for Boolean Minority and Dual Discriminator. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bharathi_et_al:LIPIcs.MFCS.2021.16,
  author =	{Bharathi, Arpitha P. and Mastrolilli, Monaldo},
  title =	{{Ideal Membership Problem for Boolean Minority and Dual Discriminator}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{16:1--16:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.16},
  URN =		{urn:nbn:de:0030-drops-144560},
  doi =		{10.4230/LIPIcs.MFCS.2021.16},
  annote =	{Keywords: Polynomial ideal membership, Polymorphisms, Gr\"{o}bner basis theory, Constraint satisfaction problems}
}
Document
Track A: Algorithms, Complexity and Games
Toward a Dichotomy for Approximation of H-Coloring

Authors: Akbar Rafiey, Arash Rafiey, and Thiago Santos

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Given two (di)graphs G, H and a cost function c:V(G) x V(H) -> Q_{>= 0} cup {+infty}, in the minimum cost homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f:V(G)-> V(H) (a.k.a H-coloring) that minimizes sum limits_{v in V(G)}c(v,f(v)). The complexity of exact minimization of this problem is well understood [Pavol Hell and Arash Rafiey, 2012], and the class of digraphs H, for which the MinHOM(H) is polynomial time solvable is a small subset of all digraphs. In this paper, we consider the approximation of MinHOM within a constant factor. In terms of digraphs, MinHOM(H) is not approximable if H contains a digraph asteroidal triple (DAT). We take a major step toward a dichotomy classification of approximable cases. We give a dichotomy classification for approximating the MinHOM(H) when H is a graph (i.e. symmetric digraph). For digraphs, we provide constant factor approximation algorithms for two important classes of digraphs, namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism or min-ordering), and k-arc digraphs (digraphs with an extended min-ordering). Specifically, we show that: - Dichotomy for Graphs: MinHOM(H) has a 2|V(H)|-approximation algorithm if graph H admits a conservative majority polymorphims (i.e. H is a bi-arc graph), otherwise, it is inapproximable; - MinHOM(H) has a |V(H)|^2-approximation algorithm if H is a bi-arc digraph; - MinHOM(H) has a |V(H)|^2-approximation algorithm if H is a k-arc digraph. In conclusion, we show the importance of these results and provide insights for achieving a dichotomy classification of approximable cases. Our constant factors depend on the size of H. However, the implementation of our algorithms provides a much better approximation ratio. It leaves open to investigate a classification of digraphs H, where MinHOM(H) admits a constant factor approximation algorithm that is independent of |V(H)|.

Cite as

Akbar Rafiey, Arash Rafiey, and Thiago Santos. Toward a Dichotomy for Approximation of H-Coloring. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 91:1-91:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rafiey_et_al:LIPIcs.ICALP.2019.91,
  author =	{Rafiey, Akbar and Rafiey, Arash and Santos, Thiago},
  title =	{{Toward a Dichotomy for Approximation of H-Coloring}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{91:1--91:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.91},
  URN =		{urn:nbn:de:0030-drops-106678},
  doi =		{10.4230/LIPIcs.ICALP.2019.91},
  annote =	{Keywords: Approximation algorithms, minimum cost homomorphism, randomized rounding}
}
  • Refine by Author
  • 2 Rafiey, Akbar
  • 1 Bharathi, Arpitha P.
  • 1 Bulatov, Andrei A.
  • 1 Mastrolilli, Monaldo
  • 1 Rafiey, Arash
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Combinatoric problems
  • 2 Mathematics of computing → Gröbner bases and other special bases
  • 1 Theory of computation → Approximation algorithms analysis

  • Refine by Keyword
  • 2 Polymorphisms
  • 1 Abelian Groups
  • 1 Approximation algorithms
  • 1 Constraint Satisfaction Problems
  • 1 Constraint satisfaction problems
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail