37 Search Results for "Robere, Robert"


Document
RANDOM
Searching for Falsified Clause in Random (log{n})-CNFs Is Hard for Randomized Communication

Authors: Artur Riazanov, Anastasia Sofronova, Dmitry Sokolov, and Weiqiang Yuan

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We show that for a randomly sampled unsatisfiable O(log n)-CNF over n variables the randomized two-party communication cost of finding a clause falsified by the given variable assignment is linear in n.

Cite as

Artur Riazanov, Anastasia Sofronova, Dmitry Sokolov, and Weiqiang Yuan. Searching for Falsified Clause in Random (log{n})-CNFs Is Hard for Randomized Communication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 64:1-64:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{riazanov_et_al:LIPIcs.APPROX/RANDOM.2025.64,
  author =	{Riazanov, Artur and Sofronova, Anastasia and Sokolov, Dmitry and Yuan, Weiqiang},
  title =	{{Searching for Falsified Clause in Random (log\{n\})-CNFs Is Hard for Randomized Communication}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{64:1--64:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.64},
  URN =		{urn:nbn:de:0030-drops-244306},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.64},
  annote =	{Keywords: communication complexity, proof complexity, random CNF}
}
Document
RANDOM
Lifting to Randomized Parity Decision Trees

Authors: Farzan Byramji and Russell Impagliazzo

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We prove a lifting theorem from randomized decision tree depth to randomized parity decision tree (PDT) size. We use the same property of the gadget, stifling, which was introduced by Chattopadhyay, Mande, Sanyal and Sherif [ITCS 23] to prove a lifting theorem for deterministic PDTs. Moreover, even the milder condition that the gadget has minimum parity certificate complexity at least 2 suffices for lifting to randomized PDT size. To improve the dependence on the gadget g in the lower bounds for composed functions, we consider a related problem g_* whose inputs are certificates of g. It is implicit in the work of Chattopadhyay et al. that for any function f, lower bounds for the *-depth of f_* give lower bounds for the PDT size of f. We make this connection explicit in the deterministic case and show that it also holds for randomized PDTs. We then combine this with composition theorems for *-depth, which follow by adapting known composition theorems for decision trees. As a corollary, we get tight lifting theorems when the gadget is Indexing, Inner Product or Disjointness.

Cite as

Farzan Byramji and Russell Impagliazzo. Lifting to Randomized Parity Decision Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 55:1-55:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{byramji_et_al:LIPIcs.APPROX/RANDOM.2025.55,
  author =	{Byramji, Farzan and Impagliazzo, Russell},
  title =	{{Lifting to Randomized Parity Decision Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{55:1--55:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.55},
  URN =		{urn:nbn:de:0030-drops-244213},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.55},
  annote =	{Keywords: Parity decision trees, composition}
}
Document
Catalytic Computing and Register Programs Beyond Log-Depth

Authors: Yaroslav Alekseev, Yuval Filmus, Ian Mertz, Alexander Smal, and Antoine Vinciguerra

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In a seminal work, Buhrman et al. (STOC 2014) defined the class CSPACE(s,c) of problems solvable in space s with an additional catalytic tape of size c, which is a tape whose initial content must be restored at the end of the computation. They showed that uniform TC¹ circuits are computable in catalytic logspace, i.e., CL = CSPACE(O(log{n}), 2^{O(log{n})}), thus giving strong evidence that catalytic space gives L strict additional power. Their study focuses on an arithmetic model called register programs, which has been a focal point in development since then. Understanding CL remains a major open problem, as TC¹ remains the most powerful containment to date. In this work, we study the power of catalytic space and register programs to compute circuits of larger depth. Using register programs, we show that for every ε > 0, SAC² ⊆ CSPACE (O((log²n)/(log log n)), 2^{O(log^{1+ε} n)}) . On the other hand, we know that SAC² ⊆ TC² ⊆ CSPACE(O(log²{n}) , 2^{O(log{n})}). Our result thus shows an O(log log n) factor improvement on the free space needed to compute SAC², at the expense of a nearly-polynomial-sized catalytic tape. We also exhibit non-trivial register programs for matrix powering, which is a further step towards showing NC² ⊆ CL.

Cite as

Yaroslav Alekseev, Yuval Filmus, Ian Mertz, Alexander Smal, and Antoine Vinciguerra. Catalytic Computing and Register Programs Beyond Log-Depth. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.MFCS.2025.6,
  author =	{Alekseev, Yaroslav and Filmus, Yuval and Mertz, Ian and Smal, Alexander and Vinciguerra, Antoine},
  title =	{{Catalytic Computing and Register Programs Beyond Log-Depth}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.6},
  URN =		{urn:nbn:de:0030-drops-241136},
  doi =		{10.4230/LIPIcs.MFCS.2025.6},
  annote =	{Keywords: catalytic computing, circuit classes, polynomial method}
}
Document
A Lower Bound for k-DNF Resolution on Random CNF Formulas via Expansion

Authors: Anastasia Sofronova and Dmitry Sokolov

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Random Δ-CNF formulas are one of the few candidates that are expected to be hard for proof systems and SAT algotirhms. Assume we sample m clauses over n variables. Here, the main complexity parameter is clause density, χ := m/n. For a fixed Δ, there exists a satisfiability threshold c_Δ such that for χ > c_Δ a formula is unsatisfiable with high probability. and for χ < c_Δ it is satisfiable with high probability. Near satisfiability threshold, there are various lower bounds for algorithms and proof systems [Eli Ben-Sasson, 2001; Eli Ben-Sasson and Russell Impagliazzo, 1999; Michael Alekhnovich and Alexander A. Razborov, 2003; Dima Grigoriev, 2001; Grant Schoenebeck, 2008; Pavel Hrubes and Pavel Pudlák, 2017; Noah Fleming et al., 2017; Dmitry Sokolov, 2024], and for high-density regimes, there exist upper bounds [Uriel Feige et al., 2006; Sebastian Müller and Iddo Tzameret, 2014; Jackson Abascal et al., 2021; Venkatesan Guruswami et al., 2022]. One of the frontiers in the direction of proving lower bounds on these formulas is the k-DNF Resolution proof system (aka Res(k)). There are several known results for k = 𝒪(√{log n}/{log log n}}) [Nathan Segerlind et al., 2004; Michael Alekhnovich, 2011], that are applicable only for density regime near the threshold. In this paper, we show the first Res(k) lower bound that is applicable in higher-density regimes. Our results work for slightly larger k = 𝒪(√{log n}).

Cite as

Anastasia Sofronova and Dmitry Sokolov. A Lower Bound for k-DNF Resolution on Random CNF Formulas via Expansion. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 32:1-32:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sofronova_et_al:LIPIcs.CCC.2025.32,
  author =	{Sofronova, Anastasia and Sokolov, Dmitry},
  title =	{{A Lower Bound for k-DNF Resolution on Random CNF Formulas via Expansion}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{32:1--32:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.32},
  URN =		{urn:nbn:de:0030-drops-237269},
  doi =		{10.4230/LIPIcs.CCC.2025.32},
  annote =	{Keywords: proof complexity, random CNFs}
}
Document
Super-Critical Trade-Offs in Resolution over Parities via Lifting

Authors: Arkadev Chattopadhyay and Pavel Dvořák

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Razborov [Alexander A. Razborov, 2016] exhibited the following surprisingly strong trade-off phenomenon in propositional proof complexity: for a parameter k = k(n), there exists k-CNF formulas over n variables, having resolution refutations of O(k) width, but every tree-like refutation of width n^{1-ε}/k needs size exp(n^Ω(k)). We extend this result to tree-like Resolution over parities, commonly denoted by Res(⊕), with parameters essentially unchanged. To obtain our result, we extend the lifting theorem of Chattopadhyay, Mande, Sanyal and Sherif [Arkadev Chattopadhyay et al., 2023] to handle tree-like affine DAGs. We introduce additional ideas from linear algebra to handle forget nodes along long paths.

Cite as

Arkadev Chattopadhyay and Pavel Dvořák. Super-Critical Trade-Offs in Resolution over Parities via Lifting. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chattopadhyay_et_al:LIPIcs.CCC.2025.24,
  author =	{Chattopadhyay, Arkadev and Dvo\v{r}\'{a}k, Pavel},
  title =	{{Super-Critical Trade-Offs in Resolution over Parities via Lifting}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.24},
  URN =		{urn:nbn:de:0030-drops-237186},
  doi =		{10.4230/LIPIcs.CCC.2025.24},
  annote =	{Keywords: Proof complexity, Lifting, Resolution over parities}
}
Document
Provably Total Functions in the Polynomial Hierarchy

Authors: Noah Fleming, Deniz Imrek, and Christophe Marciot

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
TFNP studies the complexity of total, verifiable search problems, and represents the first layer of the total function polynomial hierarchy (TFPH). Recently, problems in higher levels of the TFPH have gained significant attention, partly due to their close connection to circuit lower bounds. However, very little is known about the relationships between problems in levels of the hierarchy beyond TFNP. Connections to proof complexity have had an outsized impact on our understanding of the relationships between subclasses of TFNP in the black-box model. Subclasses are characterized by provability in certain proof systems, which has allowed for tools from proof complexity to be applied in order to separate TFNP problems. In this work we begin a systematic study of the relationship between subclasses of total search problems in the polynomial hierarchy and proof systems. We show that, akin to TFNP, reductions to a problem in TFΣ_d are equivalent to proofs of the formulas expressing the totality of the problems in some Σ_d-proof system. Having established this general correspondence, we examine important subclasses of TFPH. We show that reductions to the StrongAvoid problem are equivalent to proofs in a Σ₂-variant of the (unary) Sherali-Adams proof system. As well, we explore the TFPH classes which result from well-studied proof systems, introducing a number of new TFΣ₂ classes which characterize variants of DNF resolution, as well as TFΣ_d classes capturing levels of Σ_d-bounded-depth Frege.

Cite as

Noah Fleming, Deniz Imrek, and Christophe Marciot. Provably Total Functions in the Polynomial Hierarchy. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 28:1-28:40, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fleming_et_al:LIPIcs.CCC.2025.28,
  author =	{Fleming, Noah and Imrek, Deniz and Marciot, Christophe},
  title =	{{Provably Total Functions in the Polynomial Hierarchy}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{28:1--28:40},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.28},
  URN =		{urn:nbn:de:0030-drops-237223},
  doi =		{10.4230/LIPIcs.CCC.2025.28},
  annote =	{Keywords: TFNP, TFPH, Proof Complxity, Characterizations}
}
Document
Hardness of Clique Approximation for Monotone Circuits

Authors: Jarosław Błasiok and Linus Meierhöfer

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We consider a problem of approximating the size of the largest clique in a graph, using a monotone circuit. Concretely, we focus on distinguishing a random Erdős–Rényi graph 𝒢_{n,p}, with p = n^{-2/(α-1)} chosen st. with high probability it does not even contain an α-clique, from a random clique on β vertices (where α ≤ β). Using the approximation method of Razborov, Alon and Boppana showed in their influential work in 1987 that as long as √{α} β < n^{1-δ}/log n, this problem requires a monotone circuit of size n^Ω(δ√α), implying a lower bound of 2^Ω̃(n^{1/3}) for the exact version of the problem Clique_k when k≈ n^{2/3}. Recently, Cavalar, Kumar, and Rossman improved their result by showing a tight lower bound n^Ω(k), in a limited range k ≤ n^{1/3}, implying a comparable 2^Ω̃(n^{1/3}) lower bound after choosing the largest admissible k. We combine the ideas of Cavalar, Kumar and Rossman with recent breakthrough results on sunflower conjecture by Alweiss, Lovett, Wu, and Zhang to show that as long as α β < n^{1-δ}/log n, any monotone circuit rejecting 𝒢_{n,p} graph while accepting a β-clique needs to have size at least n^Ω(δ²α); this implies a stronger 2^Ω̃(√n) lower bound for the unrestricted version of the problem. We complement this result with a construction of an explicit monotone circuit of size O(n^{δ² α/2}) which rejects 𝒢_{n,p}, and accepts any graph containing β-clique whenever β > n^{1-δ}. In particular, those two theorems give a precise characterization of the smallest β-clique that can be distinguished from 𝒢_{n, 1/2}: when β > n / 2^{C √{log n}}, there is a polynomial-size circuit that solves it, while for β < n / 2^ω(√{log n}) every circuit needs size n^ω(1).

Cite as

Jarosław Błasiok and Linus Meierhöfer. Hardness of Clique Approximation for Monotone Circuits. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.CCC.2025.4,
  author =	{B{\l}asiok, Jaros{\l}aw and Meierh\"{o}fer, Linus},
  title =	{{Hardness of Clique Approximation for Monotone Circuits}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.4},
  URN =		{urn:nbn:de:0030-drops-236987},
  doi =		{10.4230/LIPIcs.CCC.2025.4},
  annote =	{Keywords: circuit lower bounds, monotone circuits, sunflower conjecture}
}
Document
Amortized Closure and Its Applications in Lifting for Resolution over Parities

Authors: Klim Efremenko and Dmitry Itsykson

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
The notion of closure of a set of linear forms, first introduced by Efremenko, Garlik, and Itsykson [Klim Efremenko et al., 2024], has proven instrumental in proving lower bounds on the sizes of regular and bounded-depth Res(⊕) refutations [Klim Efremenko et al., 2024; Yaroslav Alekseev and Dmitry Itsykson, 2025]. In this work, we present amortized closure, an enhancement that retains the properties of original closure [Klim Efremenko et al., 2024] but offers tighter control on its growth. Specifically, adding a new linear form increases the amortized closure by at most one. We explore two applications that highlight the power of this new concept. Utilizing our newly defined amortized closure, we extend and provide a succinct and elegant proof of the recent lifting theorem by Chattopadhyay and Dvorak [Arkadev Chattopadhyay and Pavel Dvorak, 2025]. Namely we show that for an unsatisfiable CNF formula φ and a 1-stifling gadget g: {0,1}^𝓁 → {0,1}, if the lifted formula φ∘g has a tree-like Res(⊕) refutation of size 2^d and width w, then φ has a resolution refutation of depth d and width w. The original theorem by Chattopadhyay and Dvorak [Arkadev Chattopadhyay and Pavel Dvorak, 2025] applies only to the more restrictive class of strongly stifling gadgets. As a more significant application of amortized closure, we show improved lower bounds for bounded-depth Res(⊕), extending the depth beyond that of Alekseev and Itsykson [Yaroslav Alekseev and Dmitry Itsykson, 2025]. Our result establishes an exponential lower bound for depth-Ω(n log n) Res(⊕) refutations of lifted Tseitin formulas, a notable improvement over the existing depth-Ω(n log log n) Res(⊕) lower bound.

Cite as

Klim Efremenko and Dmitry Itsykson. Amortized Closure and Its Applications in Lifting for Resolution over Parities. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 8:1-8:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{efremenko_et_al:LIPIcs.CCC.2025.8,
  author =	{Efremenko, Klim and Itsykson, Dmitry},
  title =	{{Amortized Closure and Its Applications in Lifting for Resolution over Parities}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{8:1--8:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.8},
  URN =		{urn:nbn:de:0030-drops-237023},
  doi =		{10.4230/LIPIcs.CCC.2025.8},
  annote =	{Keywords: lifting, resolution over parities, closure of linear forms, lower bounds, width, depth, size vs depth tradeoff}
}
Document
On the Automatability of Tree-Like k-DNF Resolution

Authors: Gaia Carenini and Susanna F. de Rezende

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
A proof system 𝒫 is said to be automatable in time f(N) if there exists an algorithm that given as input an unsatisfiable formula F outputs a refutation of F in the proof system 𝒫 in time f(N), where N is the size of the smallest 𝒫-refutation of F plus the size of F. Atserias and Bonet (ECCC 2002), observed that tree-like k-DNF resolution is automatable in time N^{c⋅klog N} for a universal constant c. We show that, under the randomized exponential-time hypothesis (rETH), this is tight up to a O(log k)-factor in the exponent, i.e., we prove that tree-like k-DNF resolution, for k at most logarithmic in the number of variables of F, is not automatable in time N^o((k/log k)⋅log N) unless rETH is false. Our proof builds on the non-automatability results for resolution by Atserias and Müller (FOCS 2019), for algebraic proof systems by de Rezende, Göös, Nordström, Pitassi, Robere and Sokolov (STOC 2021), and for tree-like resolution by de Rezende (LAGOS 2021).

Cite as

Gaia Carenini and Susanna F. de Rezende. On the Automatability of Tree-Like k-DNF Resolution. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carenini_et_al:LIPIcs.CCC.2025.14,
  author =	{Carenini, Gaia and de Rezende, Susanna F.},
  title =	{{On the Automatability of Tree-Like k-DNF Resolution}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.14},
  URN =		{urn:nbn:de:0030-drops-237081},
  doi =		{10.4230/LIPIcs.CCC.2025.14},
  annote =	{Keywords: Proof Complexity, Tree-like k-DNF Resolution, Automatability}
}
Document
Lifting with Colourful Sunflowers

Authors: Susanna F. de Rezende and Marc Vinyals

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We show that a generalization of the DAG-like query-to-communication lifting theorem, when proven using sunflowers over non-binary alphabets, yields lower bounds on the monotone circuit complexity and proof complexity of natural functions and formulas that are better than previously known results obtained using the approximation method. These include an n^Ω(k) lower bound for the clique function up to k ≤ n^{1/2-ε}, and an exp(Ω(n^{1/3-ε})) lower bound for a function in P.

Cite as

Susanna F. de Rezende and Marc Vinyals. Lifting with Colourful Sunflowers. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2025.36,
  author =	{de Rezende, Susanna F. and Vinyals, Marc},
  title =	{{Lifting with Colourful Sunflowers}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.36},
  URN =		{urn:nbn:de:0030-drops-237303},
  doi =		{10.4230/LIPIcs.CCC.2025.36},
  annote =	{Keywords: lifting, sunflower, clique, colouring, monotone circuit, cutting planes}
}
Document
Track A: Algorithms, Complexity and Games
On the Complexity of Hazard-Free Formulas

Authors: Leah London Arazi and Amir Shpilka

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
This paper studies the hazard-free formula complexity of Boolean functions. Our first result shows that unate functions are the only Boolean functions for which the monotone formula complexity of the hazard-derivative equals the hazard-free formula complexity of the function itself. Consequently, they are the only functions for which the hazard-derivative approach of Ikenmeyer et al. (J. ACM, 2019) yields optimal bounds. Our second result proves that the hazard-free formula complexity of a uniformly random Boolean function is at most 2^{(1+o(1))n}. Prior to this, no better upper bound than O(3ⁿ) was known. Notably, unlike in the general case of Boolean circuits and formulas, where the typical complexity is derived from that of the multiplexer function with n-bit selector, the hazard-free formula complexity of a random function is smaller than the optimal hazard-free formula for the multiplexer by an exponential factor in n. We provide two proofs of this fact. The first is direct, bounding the number of prime implicants of a random Boolean function and using this bound to construct a DNF of the claimed size. The second introduces a new and independently interesting result: a weak converse to the hazard-derivative lower bound method, which gives an upper bound on the hazard-free complexity of a function in terms of the monotone complexity of a subset of its hazard-derivatives. Additionally, we explore the hazard-free formula complexity of block composition of Boolean functions and obtain a result in the hazard-free setting that is analogous to a result of Karchmer, Raz, and Wigderson (Computational Complexity, 1995) in the monotone setting. We show that our result implies a stronger lower bound on the hazard-free formula depth of the block composition of the set covering function with the multiplexer function than the bound obtained via the hazard-derivative method.

Cite as

Leah London Arazi and Amir Shpilka. On the Complexity of Hazard-Free Formulas. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 115:1-115:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{londonarazi_et_al:LIPIcs.ICALP.2025.115,
  author =	{London Arazi, Leah and Shpilka, Amir},
  title =	{{On the Complexity of Hazard-Free Formulas}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{115:1--115:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.115},
  URN =		{urn:nbn:de:0030-drops-234920},
  doi =		{10.4230/LIPIcs.ICALP.2025.115},
  annote =	{Keywords: Hazard-free computation, Boolean formulas, monotone formulas, Karchmer-Wigderson games, communication complexity, lower bounds}
}
Document
Tropical Proof Systems: Between R(CP) and Resolution

Authors: Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Propositional proof complexity deals with the lengths of polynomial-time verifiable proofs for Boolean tautologies. An abundance of proof systems is known, including algebraic and semialgebraic systems, which work with polynomial equations and inequalities, respectively. The most basic algebraic proof system is based on Hilbert’s Nullstellensatz [Paul Beame et al., 1996]. Tropical ("min-plus") arithmetic has many applications in various areas of mathematics. The operations are the real addition (as the tropical multiplication) and the minimum (as the tropical addition). Recently, [Bertram and Easton, 2017; Dima Grigoriev and Vladimir V. Podolskii, 2018; Joo and Mincheva, 2018] demonstrated a version of Nullstellensatz in the tropical setting. In this paper we introduce (semi)algebraic proof systems that use min-plus arithmetic. For the dual-variable encoding of Boolean variables (two tropical variables x and x ̅ per one Boolean variable x) and {0,1}-encoding of the truth values, we prove that a static (Nullstellensatz-based) tropical proof system polynomially simulates daglike resolution and also has short proofs for the propositional pigeon-hole principle. Its dynamic version strengthened by an additional derivation rule (a tropical analogue of resolution by linear inequality) is equivalent to the system Res(LP) (aka R(LP)), which derives nonnegative linear combinations of linear inequalities; this latter system is known to polynomially simulate Krajíček’s Res(CP) (aka R(CP)) with unary coefficients. Therefore, tropical proof systems give a finer hierarchy of proof systems below Res(LP) for which we still do not have exponential lower bounds. While the "driving force" in Res(LP) is resolution by linear inequalities, dynamic tropical systems are driven solely by the transitivity of the order, and static tropical proof systems are based on reasoning about differences between the input linear functions. For the truth values encoded by {0,∞}, dynamic tropical proofs are equivalent to Res(∞), which is a small-depth Frege system called also DNF resolution. Finally, we provide a lower bound on the size of derivations of a much simplified tropical version of the {Binary Value Principle} in a static tropical proof system. Also, we establish the non-deducibility of the tropical resolution rule in this system and discuss axioms for Boolean logic that do not use dual variables. In this extended abstract, full proofs are omitted.

Cite as

Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch. Tropical Proof Systems: Between R(CP) and Resolution. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.STACS.2025.8,
  author =	{Alekseev, Yaroslav and Grigoriev, Dima and Hirsch, Edward A.},
  title =	{{Tropical Proof Systems: Between R(CP) and Resolution}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.8},
  URN =		{urn:nbn:de:0030-drops-228332},
  doi =		{10.4230/LIPIcs.STACS.2025.8},
  annote =	{Keywords: Cutting Planes, Nullstellensatz refutations, Res(CP), semi-algebraic proofs, tropical proof systems, tropical semiring}
}
Document
Invited Talk
Some Recent Advancements in Monotone Circuit Complexity (Invited Talk)

Authors: Susanna F. de Rezende

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
In 1985, Razborov [Razborov, 1985] proved the first superpolynomial size lower bound for monotone Boolean circuits for the perfect matching the clique functions, and, independently, Andreev [Andreev, 1985] obtained exponential size lower bounds. These breakthroughs were soon followed by further advancements in monotone complexity, including better lower bounds for clique [Alon and Boppana, 1987; Ingo Wegener, 1987], superlogarithmic depth lower bounds for connectivity by Karchmer and Wigderson [Karchmer and Wigderson, 1990], and the separations mon-NC ≠ mon-P and that mon-NC^i ≠ mon-NC^{i+1} by Raz and McKenzie [Ran Raz and Pierre McKenzie, 1999]. Karchmer and Wigderson [Karchmer and Wigderson, 1990] proved their result by establishing a relation between communication complexity and (monotone) circuit depth, and Raz and McKenzie [Ran Raz and Pierre McKenzie, 1999] introduced a new technique, now called lifting theorems, for obtaining communication lower bounds from query complexity lower bounds, In this talk, we will survey recent advancements in monotone complexity driven by query-to-communication lifting theorems. A decade ago, Göös, Pitassi, and Watson [Mika Göös et al., 2018] brought to light the generality of the result of Raz and McKenzie [Ran Raz and Pierre McKenzie, 1999] and reignited this line of work. A notable extension is the lifting theorem [Ankit Garg et al., 2020] for a model of DAG-like communication [Alexander A. Razborov, 1995; Dmitry Sokolov, 2017] that corresponds to circuit size. These powerful theorems, in their different flavours, have been instrumental in addressing many open questions in monotone circuit complexity, including: optimal 2^Ω(n) lower bounds on the size of monotone Boolean formulas computing an explicit function in NP [Toniann Pitassi and Robert Robere, 2017]; a complete picture of the relation between the mon-AC and mon-NC hierarchies [Susanna F. de Rezende et al., 2016]; a near optimal separation between monotone circuit and monotone formula size [Susanna F. de Rezende et al., 2020]; exponential separation between NC^2 and mon-P [Ankit Garg et al., 2020; Mika Göös et al., 2019]; and better lower bounds for clique [de Rezende and Vinyals, 2025; Lovett et al., 2022], improving on [Cavalar et al., 2021]. Very recently, lifting theorems were also used to prove supercritical trade-offs for monotone circuits showing that there are functions computable by small circuits for which any small circuit must have superlinear or even superpolynomial depth [de Rezende et al., 2024; Göös et al., 2024]. We will explore these results and their implications, and conclude by discussing some open problems.

Cite as

Susanna F. de Rezende. Some Recent Advancements in Monotone Circuit Complexity (Invited Talk). In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{derezende:LIPIcs.STACS.2025.4,
  author =	{de Rezende, Susanna F.},
  title =	{{Some Recent Advancements in Monotone Circuit Complexity}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{4:1--4:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.4},
  URN =		{urn:nbn:de:0030-drops-228291},
  doi =		{10.4230/LIPIcs.STACS.2025.4},
  annote =	{Keywords: monotone circuit complexity, query complexity, lifting theorems}
}
Document
Toward Better Depth Lower Bounds: Strong Composition of XOR and a Random Function

Authors: Nikolai Chukhin, Alexander S. Kulikov, and Ivan Mihajlin

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Proving formula depth lower bounds is a fundamental challenge in complexity theory, with the strongest known bound of (3 - o(1))log n established by Håstad over 25 years ago. The Karchmer-Raz-Wigderson (KRW) conjecture offers a promising approach to advance these bounds and separate P from NC¹. It suggests that the depth complexity of a function composition f ⋄ g approximates the sum of the depth complexities of f and g. The Karchmer-Wigderson (KW) relation framework translates formula depth into communication complexity, restating the KRW conjecture as CC(KW_f ⋄ KW_g) ≈ CC(KW_f) + CC(KW_g). Prior work has confirmed the conjecture under various relaxations, often replacing one or both KW relations with the universal relation or constraining the communication game through strong composition. In this paper, we examine the strong composition KW_XOR ⊛ KW_f of the parity function and a random Boolean function f. We prove that with probability 1-o(1), any protocol solving this composition requires at least n^{3 - o(1)} leaves. This result establishes a depth lower bound of (3 - o(1))log n, matching Håstad’s bound, but is applicable to a broader class of inner functions, even when the outer function is simple. Though bounds for the strong composition do not translate directly to formula depth bounds, they usually help to analyze the standard composition (of the corresponding two functions) which is directly related to formula depth. Our proof utilizes formal complexity measures. First, we apply Khrapchenko’s method to show that numerous instances of f remain unsolved after several communication steps. Subsequently, we transition to a different formal complexity measure to demonstrate that the remaining communication problem is at least as hard as KW_OR ⊛ KW_f. This hybrid approach not only achieves the desired lower bound, but also introduces a novel technique for analyzing formula depth, potentially informing future research in complexity theory.

Cite as

Nikolai Chukhin, Alexander S. Kulikov, and Ivan Mihajlin. Toward Better Depth Lower Bounds: Strong Composition of XOR and a Random Function. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chukhin_et_al:LIPIcs.STACS.2025.26,
  author =	{Chukhin, Nikolai and Kulikov, Alexander S. and Mihajlin, Ivan},
  title =	{{Toward Better Depth Lower Bounds: Strong Composition of XOR and a Random Function}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.26},
  URN =		{urn:nbn:de:0030-drops-228513},
  doi =		{10.4230/LIPIcs.STACS.2025.26},
  annote =	{Keywords: complexity, formula complexity, lower bounds, Boolean functions, depth}
}
Document
The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions

Authors: Huck Bennett, Surendra Ghentiyala, and Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We show a number of connections between two types of search problems: (1) the problem of finding an L-wise multicollision in the output of a function; and (2) the problem of finding two codewords in a code (or two vectors in a lattice) that are within distance d of each other. Specifically, we study these problems in the total regime, in which L and d are chosen so that such a solution is guaranteed to exist, though it might be hard to find. In more detail, we study the total search problem in which the input is a function 𝒞 : [A] → [B] (represented as a circuit) and the goal is to find L ≤ ⌈A/B⌉ distinct elements x_1,…, x_L ∈ A such that 𝒞(x_1) = ⋯ = 𝒞(x_L). The associated complexity classes Polynomial Multi-Pigeonhole Principle ((A,B)-PMPP^L) consist of all problems that reduce to this problem. We show close connections between (A,B)-PMPP^L and many celebrated upper bounds on the minimum distance of a code or lattice (and on the list-decoding radius). In particular, we show that the associated computational problems (i.e., the problem of finding two distinct codewords or lattice points that are close to each other) are in (A,B)-PMPP^L, with a more-or-less smooth tradeoff between the distance d and the parameters A, B, and L. These connections are particularly rich in the case of codes, in which case we show that multiple incomparable bounds on the minimum distance lie in seemingly incomparable complexity classes. Surprisingly, we also show that the computational problems associated with some bounds on the minimum distance of codes are actually hard for these classes (for codes represented by arbitrary circuits). In fact, we show that finding two vectors within a certain distance d is actually hard for the important (and well-studied) class PWPP = (B²,B)-PMPP² in essentially all parameter regimes for which an efficient algorithm is not known, so that our hardness results are essentially tight. In fact, for some d (depending on the block length, message length, and alphabet size), we obtain both hardness and containment. We therefore completely settle the complexity of this problem for such parameters and add coding problems to the short list of problems known to be complete for PWPP. We also study (A,B)-PMPP^L as an interesting family of complexity classes in its own right, and we uncover a rich structure. Specifically, we use recent techniques from the cryptographic literature on multicollision-resistant hash functions to (1) show inclusions of the form (A,B)-PMPP^L ⊆ (A',B')-PMPP^L' for certain non-trivial parameters; (2) black-box separations between such classes in different parameter regimes; and (3) a non-black-box proof that (A,B)-PMPP^L ∈ FP if (A',B')-PMPP^L' ∈ FP for yet another parameter regime. We also show that (A,B)-PMPP^L lies in the recently introduced complexity class Polynomial Long Choice for some parameters.

Cite as

Huck Bennett, Surendra Ghentiyala, and Noah Stephens-Davidowitz. The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bennett_et_al:LIPIcs.ITCS.2025.14,
  author =	{Bennett, Huck and Ghentiyala, Surendra and Stephens-Davidowitz, Noah},
  title =	{{The More the Merrier! On Total Coding and Lattice Problems and the Complexity of Finding Multicollisions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.14},
  URN =		{urn:nbn:de:0030-drops-226424},
  doi =		{10.4230/LIPIcs.ITCS.2025.14},
  annote =	{Keywords: Multicollisions, Error-correcting codes, Lattices}
}
  • Refine by Type
  • 37 Document/PDF
  • 18 Document/HTML

  • Refine by Publication Year
  • 18 2025
  • 3 2024
  • 2 2023
  • 5 2022
  • 2 2021
  • Show More...

  • Refine by Author
  • 12 Robere, Robert
  • 5 Fleming, Noah
  • 5 Göös, Mika
  • 4 Mertz, Ian
  • 4 Pitassi, Toniann
  • Show More...

  • Refine by Series/Journal
  • 37 LIPIcs

  • Refine by Classification
  • 17 Theory of computation → Proof complexity
  • 8 Theory of computation → Circuit complexity
  • 8 Theory of computation → Communication complexity
  • 8 Theory of computation → Complexity classes
  • 3 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 7 Proof Complexity
  • 7 TFNP
  • 6 proof complexity
  • 5 Cutting Planes
  • 5 lower bounds
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail