11 Search Results for "Scheder, Dominik"


Document
PLS-Completeness of String Permutations

Authors: Dominik Scheder and Johannes Tantow

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Bitstrings can be permuted via permutations and compared via the lexicographic order. In this paper we study the complexity of finding a minimum of a bitstring via given permutations. As finding a global optimum is known to be NP-complete [László Babai and Eugene M. Luks, 1983], we study the local optima via the class PLS [David S. Johnson et al., 1988] and show hardness for PLS. Additionally, we show that even for one permutation the global optimization problem is NP-complete and give a formula that has these permutation as its symmetries. This answers an open question inspired from Kołodziejczyk and Thapen [Leszek Aleksander Kolodziejczyk and Neil Thapen, 2024] and stated at the SAT and interactions seminar in Dagstuhl.

Cite as

Dominik Scheder and Johannes Tantow. PLS-Completeness of String Permutations. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 56:1-56:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{scheder_et_al:LIPIcs.ESA.2025.56,
  author =	{Scheder, Dominik and Tantow, Johannes},
  title =	{{PLS-Completeness of String Permutations}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{56:1--56:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.56},
  URN =		{urn:nbn:de:0030-drops-245245},
  doi =		{10.4230/LIPIcs.ESA.2025.56},
  annote =	{Keywords: PLS, total search problems, local search, permutation groups, symmetry}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments

Authors: Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Given a k-CNF formula and an integer s ≥ 2, we study algorithms that obtain s solutions to the formula that are as dispersed as possible. For s = 2, this problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k = 2. The current best upper bound [Angelsmark and Thapper '04] goes to 4ⁿ as k → ∞. As our first result, we show that this quadratic blow up is not necessary by utilizing the Fast-Fourier transform (FFT) to give a O^*(2ⁿ) time exact algorithm for computing the diameter of any k-CNF formula. For s > 2, the problem was raised in the SAT community (Nadel '11) and several heuristics have been proposed for it, but no algorithms with theoretical guarantees are known. We give exact algorithms using FFT and clique-finding that run in O^*(2^{(s-1)n}) and O^*(s² |Ω_{𝐅}|^{ω ⌈ s/3 ⌉}) respectively, where |Ω_{𝐅}| is the size of the solutions space of the formula 𝐅 and ω is the matrix multiplication exponent. However, current SAT algorithms for finding one solution run in time O^*(2^{ε_{k}n}) for ε_{k} ≈ 1-Θ(1/k), which is much faster than all above run times. As our main result, we analyze two popular SAT algorithms - PPZ (Paturi, Pudlák, Zane '97) and Schöning’s ('02) algorithms, and show that in time poly(s)O^*(2^{ε_{k}n}), they can be used to approximate diameter as well as the dispersion (s > 2) problem. While we need to modify Schöning’s original algorithm for technical reasons, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe this geometric sampling property of PPZ may be of independent interest. Finally, we focus on diverse solutions to NP-complete optimization problems, and give bi-approximations running in time poly(s)O^*(2^{ε n}) with ε < 1 for several problems such as Maximum Independent Set, Minimum Vertex Cover, Minimum Hitting Set, Feedback Vertex Set, Multicut on Trees and Interval Vertex Deletion. For all of these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods show that by relaxing to bi-approximations, this dependence on s can be made polynomial.

Cite as

Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan. Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.ICALP.2025.14,
  author =	{Austrin, Per and Bercea, Ioana O. and Goswami, Mayank and Limaye, Nutan and Srinivasan, Adarsh},
  title =	{{Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.14},
  URN =		{urn:nbn:de:0030-drops-233916},
  doi =		{10.4230/LIPIcs.ICALP.2025.14},
  annote =	{Keywords: Exponential time algorithms, Satisfiability, k-SAT, PPZ, Sch\"{o}ning, Dispersion, Diversity}
}
Document
Local Enumeration: The Not-All-Equal Case

Authors: Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Gurumukhani et al. (CCC'24) proposed the local enumeration problem Enum(k, t) as an approach to break the Super Strong Exponential Time Hypothesis (SSETH): for a natural number k and a parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than t(n), enumerate all satisfying assignments of Hamming weight exactly t(n). Furthermore, they gave a randomized algorithm for Enum(k, t) and employed new ideas to analyze the first non-trivial case, namely k = 3. In particular, they solved Enum(3, n/2) in expected 1.598ⁿ time. A simple construction shows a lower bound of 6^{n/4} ≈ 1.565ⁿ. In this paper, we show that to break SSETH, it is sufficient to consider a simpler local enumeration problem NAE-Enum(k, t): for a natural number k and a parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than t(n), enumerate all Not-All-Equal (NAE) solutions of Hamming weight exactly t(n), i.e., those that satisfy and falsify some literal in every clause. We refine the algorithm of Gurumukhani et al. and show that it optimally solves NAE-Enum(3, n/2), namely, in expected time poly(n) ⋅ 6^{n/4}.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard. Local Enumeration: The Not-All-Equal Case. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.STACS.2025.42,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration: The Not-All-Equal Case}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.42},
  URN =		{urn:nbn:de:0030-drops-228680},
  doi =		{10.4230/LIPIcs.STACS.2025.42},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
Catalytic Communication

Authors: Edward Pyne, Nathan S. Sheffield, and William Wang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
The study of space-bounded computation has drawn extensively from ideas and results in the field of communication complexity. Catalytic Computation (Buhrman, Cleve, Koucký, Loff and Speelman, STOC 2013) studies the power of bounded space augmented with a pre-filled hard drive that can be used non-destructively during the computation. Presently, many structural questions in this model remain open. Towards a better understanding of catalytic space, we define a model of catalytic communication complexity and prove new upper and lower bounds. In our model, Alice and Bob share a blackboard with a tiny number of free bits, and a larger section with an arbitrary initial configuration. They must jointly compute a function of their inputs, communicating only via the blackboard, and must always reset the blackboard to its initial configuration. We prove several upper and lower bounds: 1) We characterize the simplest nontrivial model, that of one bit of free space and three rounds, in terms of 𝔽₂ rank. In particular, we give natural problems that are solvable with a minimal-sized blackboard that require near-maximal (randomized) communication complexity, and vice versa. 2) We show that allowing constantly many free bits, as opposed to one, allows an exponential improvement on the size of the blackboard for natural problems. To do so, we connect the problem to existence questions in extremal graph theory. 3) We give tight connections between our model and standard notions of non-uniform catalytic computation. Using this connection, we show that with an arbitrary constant number of rounds and bits of free space, one can compute all functions in TC⁰. We view this model as a step toward understanding the value of filled space in computation.

Cite as

Edward Pyne, Nathan S. Sheffield, and William Wang. Catalytic Communication. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 79:1-79:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pyne_et_al:LIPIcs.ITCS.2025.79,
  author =	{Pyne, Edward and Sheffield, Nathan S. and Wang, William},
  title =	{{Catalytic Communication}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{79:1--79:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.79},
  URN =		{urn:nbn:de:0030-drops-227076},
  doi =		{10.4230/LIPIcs.ITCS.2025.79},
  annote =	{Keywords: Catalytic computation, Branching programs, Communication complexity}
}
Document
Impatient PPSZ - A Faster Algorithm for CSP

Authors: Shibo Li and Dominik Scheder

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
PPSZ is the fastest known algorithm for (d,k)-CSP problems, for most values of d and k. It goes through the variables in random order and sets each variable randomly to one of the d colors, excluding those colors that can be ruled out by looking at few constraints at a time. We propose and analyze a modification of PPSZ: whenever all but 2 colors can be ruled out for some variable, immediately set that variable randomly to one of the remaining colors. We show that our new "impatient PPSZ" outperforms PPSZ exponentially for all k and all d ≥ 3 on formulas with a unique satisfying assignment.

Cite as

Shibo Li and Dominik Scheder. Impatient PPSZ - A Faster Algorithm for CSP. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ISAAC.2021.33,
  author =	{Li, Shibo and Scheder, Dominik},
  title =	{{Impatient PPSZ - A Faster Algorithm for CSP}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.33},
  URN =		{urn:nbn:de:0030-drops-154662},
  doi =		{10.4230/LIPIcs.ISAAC.2021.33},
  annote =	{Keywords: Randomized algorithms, Constraint Satisfaction Problems, exponential-time algorithms}
}
Document
Super Strong ETH Is True for PPSZ with Small Resolution Width

Authors: Dominik Scheder and Navid Talebanfard

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We construct k-CNFs with m variables on which the strong version of PPSZ k-SAT algorithm, which uses resolution of width bounded by O(√{log log m}), has success probability at most 2^{-(1-(1 + ε)2/k)m} for every ε > 0. Previously such a bound was known only for the weak PPSZ algorithm which exhaustively searches through small subformulas of the CNF to see if any of them forces the value of a given variable, and for strong PPSZ the best known previous upper bound was 2^{-(1-O(log(k)/k))m} (Pudlák et al., ICALP 2017).

Cite as

Dominik Scheder and Navid Talebanfard. Super Strong ETH Is True for PPSZ with Small Resolution Width. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 3:1-3:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{scheder_et_al:LIPIcs.CCC.2020.3,
  author =	{Scheder, Dominik and Talebanfard, Navid},
  title =	{{Super Strong ETH Is True for PPSZ with Small Resolution Width}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{3:1--3:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.3},
  URN =		{urn:nbn:de:0030-drops-125552},
  doi =		{10.4230/LIPIcs.CCC.2020.3},
  annote =	{Keywords: k-SAT, PPSZ, Resolution}
}
Document
Searching for Cryptogenography Upper Bounds via Sum of Square Programming

Authors: Dominik Scheder, Shuyang Tang, and Jiaheng Zhang

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Cryptogenography is a secret-leaking game in which one of n players is holding a secret to be leaked. The n players engage in communication as to (1) reveal the secret while (2) keeping the identity of the secret holder as obscure as possible. All communication is public, and no computational hardness assumptions are made, i.e., the setting is purely information theoretic. Brody, Jakobsen, Scheder, and Winkler [Joshua Brody et al., 2014] formally defined this problem, showed that it has an equivalent geometric characterization, and gave upper and lower bounds for the case in which the n players want to leak a single bit. Surprisingly, even the easiest case, where two players want to leak a secret consisting of a single bit, is not completely understood. Doerr and Künnemann [Benjamin Doerr and Marvin Künnemann, 2016] showed how to automatically search for good protocols using a computer, thus finding an improved protocol for the 1-bit two-player case. In this work, we show how the search for upper bounds (impossibility results) can be formulated as a Sum of Squares program. We implement this idea for the 1-bit two-player case and significantly improve the previous upper bound from 47/128 = 0.3671875 to 0.35183.

Cite as

Dominik Scheder, Shuyang Tang, and Jiaheng Zhang. Searching for Cryptogenography Upper Bounds via Sum of Square Programming. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 31:1-31:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{scheder_et_al:LIPIcs.ISAAC.2019.31,
  author =	{Scheder, Dominik and Tang, Shuyang and Zhang, Jiaheng},
  title =	{{Searching for Cryptogenography Upper Bounds via Sum of Square Programming}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{31:1--31:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.31},
  URN =		{urn:nbn:de:0030-drops-115276},
  doi =		{10.4230/LIPIcs.ISAAC.2019.31},
  annote =	{Keywords: Communication Complexity, Secret Leaking, Sum of Squares Programming}
}
Document
PPSZ for General k-SAT - Making Hertli's Analysis Simpler and 3-SAT Faster

Authors: Dominik Scheder and John P. Steinberger

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi, Pudlak, Saks, and Zane. Analyzing its running time is much easier for input formulas with a unique satisfying assignment. In this paper, we achieve three goals. First, we simplify Hertli's analysis for input formulas with multiple satisfying assignments. Second, we show a "translation result": if you improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately get a (weaker) improvement for general k-CNF formulas. Combining this with a result by Hertli from 2014, in which he gives an algorithm for Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT, thus obtaining the so far best known worst-case bounds for 3-SAT.

Cite as

Dominik Scheder and John P. Steinberger. PPSZ for General k-SAT - Making Hertli's Analysis Simpler and 3-SAT Faster. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{scheder_et_al:LIPIcs.CCC.2017.9,
  author =	{Scheder, Dominik and Steinberger, John P.},
  title =	{{PPSZ for General k-SAT - Making Hertli's Analysis Simpler and 3-SAT Faster}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.9},
  URN =		{urn:nbn:de:0030-drops-75355},
  doi =		{10.4230/LIPIcs.CCC.2017.9},
  annote =	{Keywords: Boolean satisfiability, exponential algorithms, randomized algorithms}
}
Document
Tighter Hard Instances for PPSZ

Authors: Pavel Pudlák, Dominik Scheder, and Navid Talebanfard

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We construct uniquely satisfiable k-CNF formulas that are hard for the PPSZ algorithm, the currently best known algorithm solving k-SAT. This algorithm tries to generate a satisfying assignment by picking a random variable at a time and attempting to derive its value using some inference heuristic and otherwise assigning a random value. The "weak PPSZ" checks all subformulas of a given size to derive a value and the "strong PPSZ" runs resolution with width bounded by some given function. Firstly, we construct graph-instances on which "weak PPSZ" has savings of at most (2 + epsilon)/k; the saving of an algorithm on an input formula with n variables is the largest gamma such that the algorithm succeeds (i.e. finds a satisfying assignment) with probability at least 2^{- (1 - gamma) n}. Since PPSZ (both weak and strong) is known to have savings of at least (pi^2 + o(1))/6k, this is optimal up to the constant factor. In particular, for k=3, our upper bound is 2^{0.333... n}, which is fairly close to the lower bound 2^{0.386... n} of Hertli [SIAM J. Comput.'14]. We also construct instances based on linear systems over F_2 for which strong PPSZ has savings of at most O(log(k)/k). This is only a log(k) factor away from the optimal bound. Our constructions improve previous savings upper bound of O((log^2(k))/k) due to Chen et al. [SODA'13].

Cite as

Pavel Pudlák, Dominik Scheder, and Navid Talebanfard. Tighter Hard Instances for PPSZ. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 85:1-85:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{pudlak_et_al:LIPIcs.ICALP.2017.85,
  author =	{Pudl\'{a}k, Pavel and Scheder, Dominik and Talebanfard, Navid},
  title =	{{Tighter Hard Instances for PPSZ}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{85:1--85:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.85},
  URN =		{urn:nbn:de:0030-drops-74144},
  doi =		{10.4230/LIPIcs.ICALP.2017.85},
  annote =	{Keywords: k-SAT, Strong Exponential Time Hypothesis, PPSZ, Resolution}
}
Document
Improving PPSZ for 3-SAT using Critical Variables

Authors: Timon Hertli, Robin A. Moser, and Dominik Scheder

Published in: LIPIcs, Volume 9, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)


Abstract
A critical variable of a satisfiable CNF formula is a variable that has the same value in all satisfying assignments. Using a simple case distinction on the fraction of critical variables of a CNF formula, we improve the running time for 3-SAT from O(1.32216^n) [Rolf 2006] to O(1.32153^n). Using a different approach, Iwama et al. very recently achieved a running time of O(1.32113^n). Our method nicely combines with theirs, yielding the currently fastest known algorithm with running time O(1.32065^n). We also improve the bound for 4-SAT from O(1.47390^n) [Hofmeister et al. 2002] to O(1.46928^n), where O(1.46981^n) can be obtained using the methods of Hofmeister and Rolf.

Cite as

Timon Hertli, Robin A. Moser, and Dominik Scheder. Improving PPSZ for 3-SAT using Critical Variables. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 237-248, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{hertli_et_al:LIPIcs.STACS.2011.237,
  author =	{Hertli, Timon and Moser, Robin A. and Scheder, Dominik},
  title =	{{Improving PPSZ for 3-SAT using Critical Variables}},
  booktitle =	{28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)},
  pages =	{237--248},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-25-5},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{9},
  editor =	{Schwentick, Thomas and D\"{u}rr, Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2011.237},
  URN =		{urn:nbn:de:0030-drops-30147},
  doi =		{10.4230/LIPIcs.STACS.2011.237},
  annote =	{Keywords: SAT, satisfiability, randomized, exponential time, algorithm, 3-SAT, 4-SAT}
}
Document
Unsatisfiable Linear CNF Formulas Are Large and Complex

Authors: Dominik Scheder

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
We call a CNF formula {\em linear} if any two clauses have at most one variable in common. We show that there exist unsatisfiable linear $k$-CNF formulas with at most $4k^24^k$ clauses, and on the other hand, any linear $k$-CNF formula with at most $\frac{4^k}{8e^2k^2}$ clauses is satisfiable. The upper bound uses probabilistic means, and we have no explicit construction coming even close to it. One reason for this is that unsatisfiable linear formulas exhibit a more complex structure than general (non-linear) formulas: First, any treelike resolution refutation of any unsatisfiable linear $k$-CNF formula has size at least $2^{2^{\frac{k}{2}-1}}$. This implies that small unsatisfiable linear $k$-CNF formulas are hard instances for Davis-Putnam style splitting algorithms. Second, if we require that the formula $F$ have a {\em strict} resolution tree, i.e. every clause of $F$ is used only once in the resolution tree, then we need at least $a^{a^{\iddots^a}}$ clauses, where $a \approx 2$ and the height of this tower is roughly $k$.

Cite as

Dominik Scheder. Unsatisfiable Linear CNF Formulas Are Large and Complex. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 621-632, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{scheder:LIPIcs.STACS.2010.2490,
  author =	{Scheder, Dominik},
  title =	{{Unsatisfiable Linear CNF Formulas Are Large and Complex}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{621--632},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2490},
  URN =		{urn:nbn:de:0030-drops-24901},
  doi =		{10.4230/LIPIcs.STACS.2010.2490},
  annote =	{Keywords: Extremal combinatorics, proof complexity, probabilistic method}
}
  • Refine by Type
  • 11 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 1 2021
  • 1 2020
  • 1 2019
  • 2 2017
  • Show More...

  • Refine by Author
  • 8 Scheder, Dominik
  • 3 Talebanfard, Navid
  • 1 Austrin, Per
  • 1 Bercea, Ioana O.
  • 1 Goswami, Mayank
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Communication complexity
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 3 k-SAT
  • 2 PPSZ
  • 2 Resolution
  • 1 3-SAT
  • 1 4-SAT
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail