7 Search Results for "Tillmann, Stephan"


Document
Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains

Authors: Mart Hagedoorn and Valentin Polishchuk

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We show how to preprocess a polygonal domain with holes so that the link distance (the number of links in a minimum-link path) between two query points in the domain can be reported efficiently. Using our data structures, the link diameter of the domain (i.e., the maximum number of links that may be required in a minimum-link path between two points in the domain) as well as the link center and radius of the domain (i.e., the point minimizing the maximum link distance to the furthest point in the domain and this maximum link distance) can be found in polynomial time. We also give a simpler algorithm for finding the link diameter, not using the link distance query structures. Answering 2-point link distance queries and computing the link diameter/radius/center in polygonal domains have been open questions since these problems were studied for simple polygons in the 90’s.

Cite as

Mart Hagedoorn and Valentin Polishchuk. Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hagedoorn_et_al:LIPIcs.WADS.2025.34,
  author =	{Hagedoorn, Mart and Polishchuk, Valentin},
  title =	{{Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.34},
  URN =		{urn:nbn:de:0030-drops-242659},
  doi =		{10.4230/LIPIcs.WADS.2025.34},
  annote =	{Keywords: Minimum-link paths, link distance, diameter, center, radius, 2-point distance queries}
}
Document
Guarding Offices with Maximum Dispersion

Authors: Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We investigate the Dispersive Art Gallery Problem with vertex guards and rectangular visibility (r-visibility) for a class of orthogonal polygons that reflect the properties of real-world floor plans: these office-like polygons consist of rectangular rooms and corridors. In the dispersive variant of the Art Gallery Problem, the objective is not to minimize the number of guards but to maximize the minimum geodesic L₁-distance between any two guards, called the dispersion distance. Our main contributions are as follows. We prove that determining whether a vertex guard set can achieve a dispersion distance of 4 in office-like polygons is NP-complete, where vertices of the polygon are restricted to integer coordinates. Additionally, we present a simple worst-case optimal algorithm that guarantees a dispersion distance of 3 in polynomial time. Our complexity result extends to polyominoes, resolving an open question posed by Rieck and Scheffer [Christian Rieck and Christian Scheffer, 2024]. When vertex coordinates are allowed to be rational, we establish analogous results, proving that achieving a dispersion distance of 2+ε is NP-hard for any ε > 0, while the classic Art Gallery Problem remains solvable in polynomial time for this class of polygons. Furthermore, we give a straightforward polynomial-time algorithm that computes worst-case optimal solutions with a dispersion distance 2. On the other hand, for the more restricted class of hole-free independent office-like polygons, we propose a dynamic programming approach that computes optimal solutions. Moreover, we demonstrate that the problem is practically tractable for arbitrary orthogonal polygons. To this end, we compare solvers based on SAT, CP, and MIP formulations. Notably, SAT solvers efficiently compute optimal solutions for randomly generated instances with up to 1600 vertices in under 15s.

Cite as

Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer. Guarding Offices with Maximum Dispersion. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.MFCS.2025.46,
  author =	{Fekete, S\'{a}ndor P. and Kobbe, Kai and Krupke, Dominik and Mitchell, Joseph S. B. and Rieck, Christian and Scheffer, Christian},
  title =	{{Guarding Offices with Maximum Dispersion}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{46:1--46:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.46},
  URN =		{urn:nbn:de:0030-drops-241530},
  doi =		{10.4230/LIPIcs.MFCS.2025.46},
  annote =	{Keywords: Dispersive Art Gallery Problem, vertex guards, office-like polygons, orthogonal polygons, polyominoes, NP-completeness, worst-case optimality, dynamic programming, SAT solver}
}
Document
Hard Diagrams of Split Links

Authors: Corentin Lunel, Arnaud de Mesmay, and Jonathan Spreer

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Deformations of knots and links in ambient space can be studied combinatorially on their diagrams via local modifications called Reidemeister moves. While it is well-known that, in order to move between equivalent diagrams with Reidemeister moves, one sometimes needs to insert excess crossings, there are significant gaps between the best known lower and upper bounds on the required number of these added crossings. In this article, we study the problem of turning a diagram of a split link into a split diagram, and we show that there exist split links with diagrams requiring an arbitrarily large number of such additional crossings. More precisely, we provide a family of diagrams of split links, so that any sequence of Reidemeister moves transforming a diagram with c crossings into a split diagram requires going through a diagram with Ω(√c) extra crossings. Our proof relies on the framework of bubble tangles, as introduced by the first two authors, and a technique of Chambers and Liokumovitch to turn homotopies into isotopies in the context of Riemannian geometry.

Cite as

Corentin Lunel, Arnaud de Mesmay, and Jonathan Spreer. Hard Diagrams of Split Links. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 67:1-67:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lunel_et_al:LIPIcs.SoCG.2025.67,
  author =	{Lunel, Corentin and de Mesmay, Arnaud and Spreer, Jonathan},
  title =	{{Hard Diagrams of Split Links}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{67:1--67:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.67},
  URN =		{urn:nbn:de:0030-drops-232191},
  doi =		{10.4230/LIPIcs.SoCG.2025.67},
  annote =	{Keywords: Knot theory, hard knot and link diagrams, Reidemeister moves, extra crossings, split links, bubble tangles, compression representativity}
}
Document
The Maximum Clique Problem in a Disk Graph Made Easy

Authors: J. Mark Keil and Debajyoti Mondal

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A disk graph is an intersection graph of disks in ℝ². Determining the computational complexity of finding a maximum clique in a disk graph is a long-standing open problem. In 1990, Clark, Colbourn, and Johnson gave a polynomial-time algorithm for computing a maximum clique in a unit disk graph. However, finding a maximum clique when disks are of arbitrary size is widely believed to be a challenging open problem. In this paper, we provide a new perspective to examine adjacencies in a disk graph that helps obtain the following results. - We design an 𝒪^*(n^{2k})-time algorithm, where 𝒪^* hides a polynomial factor, to find a maximum clique in a n-vertex disk graph with k different sizes of radii. This is polynomial for every fixed k, and thus settles the open question for the case when k = 2. - Given a set of n unit disks, we show how to compute a maximum clique inside each possible axis-aligned rectangle determined by the disk centers in O(n⁵log n)-time. This is at least a factor of n^{4/3} faster than applying the fastest known algorithm for finding a maximum clique in a unit disk graph for each rectangle independently. - We give an 𝒪^*(n^{2rk})-time algorithm to find a maximum clique in a n-vertex ball graph with k different sizes of radii where the ball centers lie on r parallel planes. This is polynomial for every fixed k and r, and thus contrasts the previously known NP-hardness result for finding a maximum clique in an arbitrary ball graph. - We design an 𝒪^*(n^{2k})-time algorithm to find a maximum clique in the intersection graph of a set S of n L-visible convex polygons, where k is the number of distinct shapes in S. This contrasts the known hardness result on finding a maximum clique in the intersection graph of unit disks and axis-aligned rectangles.

Cite as

J. Mark Keil and Debajyoti Mondal. The Maximum Clique Problem in a Disk Graph Made Easy. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 63:1-63:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{keil_et_al:LIPIcs.SoCG.2025.63,
  author =	{Keil, J. Mark and Mondal, Debajyoti},
  title =	{{The Maximum Clique Problem in a Disk Graph Made Easy}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{63:1--63:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.63},
  URN =		{urn:nbn:de:0030-drops-232155},
  doi =		{10.4230/LIPIcs.SoCG.2025.63},
  annote =	{Keywords: Geometric Intersection Graphs, Disk Graphs, Ball Graphs, Maximum Clique}
}
Document
Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems

Authors: Ahmad Biniaz, Anil Maheshwari, Magnus Christian Ring Merrild, Joseph S. B. Mitchell, Saeed Odak, Valentin Polishchuk, Eliot W. Robson, Casper Moldrup Rysgaard, Jens Kristian Refsgaard Schou, Thomas Shermer, Jack Spalding-Jamieson, Rolf Svenning, and Da Wei Zheng

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We introduce the contiguous art gallery problem which is to guard the boundary of a simple polygon with a minimum number of guards such that each guard covers exactly one contiguous portion of the boundary. Art gallery problems are often NP-hard. In particular, it is NP-hard to minimize the number of guards to see the boundary of a simple polygon, without the contiguity constraint. This paper is a merge of three concurrent works [Ahmad Biniaz et al., 2024; Magnus Christian Ring Merrild et al., 2024; Eliot W. Robson et al., 2024] each showing that (surprisingly) the contiguous art gallery problem is solvable in polynomial time. The common idea of all three approaches is developing a greedy function that maps a point on the boundary to the furthest point on the boundary so that the contiguous interval along the boundary between them could be guarded by one guard. Repeatedly applying this function immediately leads to an OPT+1 approximation. By studying this greedy algorithm, we present three different approaches that achieve an optimal solution. The first and second approach apply this greedy algorithm from different points on the boundary that could be found in advance or on the fly while traversing along the boundary (respectively). The third approach represents this function as a piecewise linear rational function, which can be reduced to an abstract arc cover problem involving infinite families of arcs. We identify other problems that can be represented by similar functions, and solve them via the third approach. From the combinatorial point of view, we show that any n-vertex polygon can be guarded by at most ⌊(n-2)/2⌋ guards. This bound is tight because there are polygons that require this many guards.

Cite as

Ahmad Biniaz, Anil Maheshwari, Magnus Christian Ring Merrild, Joseph S. B. Mitchell, Saeed Odak, Valentin Polishchuk, Eliot W. Robson, Casper Moldrup Rysgaard, Jens Kristian Refsgaard Schou, Thomas Shermer, Jack Spalding-Jamieson, Rolf Svenning, and Da Wei Zheng. Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.20,
  author =	{Biniaz, Ahmad and Maheshwari, Anil and Merrild, Magnus Christian Ring and Mitchell, Joseph S. B. and Odak, Saeed and Polishchuk, Valentin and Robson, Eliot W. and Rysgaard, Casper Moldrup and Schou, Jens Kristian Refsgaard and Shermer, Thomas and Spalding-Jamieson, Jack and Svenning, Rolf and Zheng, Da Wei},
  title =	{{Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.20},
  URN =		{urn:nbn:de:0030-drops-231720},
  doi =		{10.4230/LIPIcs.SoCG.2025.20},
  annote =	{Keywords: Art Gallery Problem, Computational Geometry, Combinatorics, Discrete Algorithms}
}
Document
Can You Link Up With Treewidth?

Authors: Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
A central result by Marx [ToC '10] constructs k-vertex graphs H of maximum degree 3 such that n^o(k/log k) time algorithms for detecting colorful H-subgraphs would refute the Exponential-Time Hypothesis (ETH). This result is widely used to obtain almost-tight conditional lower bounds for parameterized problems under ETH. Our first contribution is a new and fully self-contained proof of this result that further simplifies a recent work by Karthik et al. [SOSA 2024]. In our proof, we introduce a novel graph parameter of independent interest, the linkage capacity γ(H), and show that detecting colorful H-subgraphs in time n^o(γ(H)) refutes ETH. Then, we use a simple construction of communication networks credited to Beneš to obtain k-vertex graphs of maximum degree 3 and linkage capacity Ω(k/log k), avoiding arguments involving expander graphs, which were required in previous papers. We also show that every graph H of treewidth t has linkage capacity Ω(t/log t), thus recovering a stronger result shown by Marx [ToC '10] with a simplified proof. Additionally, we obtain new tight lower bounds on the complexity of subgraph detection for certain types of patterns by analyzing their linkage capacity: We prove that almost all k-vertex graphs of polynomial average degree Ω(k^β) for β > 0 have linkage capacity Θ(k), which implies tight lower bounds for finding such patterns H. As an application of these results, we also obtain tight lower bounds for counting small induced subgraphs having a fixed property Φ, improving bounds from, e.g., [Roth et al., FOCS 2020].

Cite as

Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang. Can You Link Up With Treewidth?. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.STACS.2025.28,
  author =	{Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel and Wang, Jiaheng},
  title =	{{Can You Link Up With Treewidth?}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.28},
  URN =		{urn:nbn:de:0030-drops-228534},
  doi =		{10.4230/LIPIcs.STACS.2025.28},
  annote =	{Keywords: subgraph isomorphism, constraint satisfaction problems, linkage capacity, exponential-time hypothesis, parameterized complexity, counting complexity}
}
Document
The Trisection Genus of Standard Simply Connected PL 4-Manifolds

Authors: Jonathan Spreer and Stephan Tillmann

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
Gay and Kirby recently introduced the concept of a trisection for arbitrary smooth, oriented closed 4-manifolds, and with it a new topological invariant, called the trisection genus. In this note we show that the K3 surface has trisection genus 22. This implies that the trisection genus of all standard simply connected PL 4-manifolds is known. We show that the trisection genus of each of these manifolds is realised by a trisection that is supported by a singular triangulation. Moreover, we explicitly give the building blocks to construct these triangulations.

Cite as

Jonathan Spreer and Stephan Tillmann. The Trisection Genus of Standard Simply Connected PL 4-Manifolds. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 71:1-71:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{spreer_et_al:LIPIcs.SoCG.2018.71,
  author =	{Spreer, Jonathan and Tillmann, Stephan},
  title =	{{The Trisection Genus of Standard Simply Connected PL 4-Manifolds}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{71:1--71:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.71},
  URN =		{urn:nbn:de:0030-drops-87847},
  doi =		{10.4230/LIPIcs.SoCG.2018.71},
  annote =	{Keywords: combinatorial topology, triangulated manifolds, simply connected 4-manifolds, K3 surface, trisections of 4-manifolds}
}
  • Refine by Type
  • 7 Document/PDF
  • 5 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2018

  • Refine by Author
  • 2 Mitchell, Joseph S. B.
  • 2 Polishchuk, Valentin
  • 2 Spreer, Jonathan
  • 1 Biniaz, Ahmad
  • 1 Curticapean, Radu
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs

  • Refine by Classification
  • 4 Theory of computation → Computational geometry
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Mathematics of computing → Geometric topology
  • 1 Mathematics of computing → Graph theory
  • 1 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 1 2-point distance queries
  • 1 Art Gallery Problem
  • 1 Ball Graphs
  • 1 Combinatorics
  • 1 Computational Geometry
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail