Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)
Mart Hagedoorn and Valentin Polishchuk. Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{hagedoorn_et_al:LIPIcs.WADS.2025.34,
author = {Hagedoorn, Mart and Polishchuk, Valentin},
title = {{Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains}},
booktitle = {19th International Symposium on Algorithms and Data Structures (WADS 2025)},
pages = {34:1--34:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-398-0},
ISSN = {1868-8969},
year = {2025},
volume = {349},
editor = {Morin, Pat and Oh, Eunjin},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.34},
URN = {urn:nbn:de:0030-drops-242659},
doi = {10.4230/LIPIcs.WADS.2025.34},
annote = {Keywords: Minimum-link paths, link distance, diameter, center, radius, 2-point distance queries}
}
Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)
Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer. Guarding Offices with Maximum Dispersion. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{fekete_et_al:LIPIcs.MFCS.2025.46,
author = {Fekete, S\'{a}ndor P. and Kobbe, Kai and Krupke, Dominik and Mitchell, Joseph S. B. and Rieck, Christian and Scheffer, Christian},
title = {{Guarding Offices with Maximum Dispersion}},
booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
pages = {46:1--46:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-388-1},
ISSN = {1868-8969},
year = {2025},
volume = {345},
editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.46},
URN = {urn:nbn:de:0030-drops-241530},
doi = {10.4230/LIPIcs.MFCS.2025.46},
annote = {Keywords: Dispersive Art Gallery Problem, vertex guards, office-like polygons, orthogonal polygons, polyominoes, NP-completeness, worst-case optimality, dynamic programming, SAT solver}
}
Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)
Corentin Lunel, Arnaud de Mesmay, and Jonathan Spreer. Hard Diagrams of Split Links. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 67:1-67:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{lunel_et_al:LIPIcs.SoCG.2025.67,
author = {Lunel, Corentin and de Mesmay, Arnaud and Spreer, Jonathan},
title = {{Hard Diagrams of Split Links}},
booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)},
pages = {67:1--67:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-370-6},
ISSN = {1868-8969},
year = {2025},
volume = {332},
editor = {Aichholzer, Oswin and Wang, Haitao},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.67},
URN = {urn:nbn:de:0030-drops-232191},
doi = {10.4230/LIPIcs.SoCG.2025.67},
annote = {Keywords: Knot theory, hard knot and link diagrams, Reidemeister moves, extra crossings, split links, bubble tangles, compression representativity}
}
Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)
J. Mark Keil and Debajyoti Mondal. The Maximum Clique Problem in a Disk Graph Made Easy. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 63:1-63:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{keil_et_al:LIPIcs.SoCG.2025.63,
author = {Keil, J. Mark and Mondal, Debajyoti},
title = {{The Maximum Clique Problem in a Disk Graph Made Easy}},
booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)},
pages = {63:1--63:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-370-6},
ISSN = {1868-8969},
year = {2025},
volume = {332},
editor = {Aichholzer, Oswin and Wang, Haitao},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.63},
URN = {urn:nbn:de:0030-drops-232155},
doi = {10.4230/LIPIcs.SoCG.2025.63},
annote = {Keywords: Geometric Intersection Graphs, Disk Graphs, Ball Graphs, Maximum Clique}
}
Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)
Ahmad Biniaz, Anil Maheshwari, Magnus Christian Ring Merrild, Joseph S. B. Mitchell, Saeed Odak, Valentin Polishchuk, Eliot W. Robson, Casper Moldrup Rysgaard, Jens Kristian Refsgaard Schou, Thomas Shermer, Jack Spalding-Jamieson, Rolf Svenning, and Da Wei Zheng. Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.20,
author = {Biniaz, Ahmad and Maheshwari, Anil and Merrild, Magnus Christian Ring and Mitchell, Joseph S. B. and Odak, Saeed and Polishchuk, Valentin and Robson, Eliot W. and Rysgaard, Casper Moldrup and Schou, Jens Kristian Refsgaard and Shermer, Thomas and Spalding-Jamieson, Jack and Svenning, Rolf and Zheng, Da Wei},
title = {{Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems}},
booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)},
pages = {20:1--20:21},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-370-6},
ISSN = {1868-8969},
year = {2025},
volume = {332},
editor = {Aichholzer, Oswin and Wang, Haitao},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.20},
URN = {urn:nbn:de:0030-drops-231720},
doi = {10.4230/LIPIcs.SoCG.2025.20},
annote = {Keywords: Art Gallery Problem, Computational Geometry, Combinatorics, Discrete Algorithms}
}
Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)
Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang. Can You Link Up With Treewidth?. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{curticapean_et_al:LIPIcs.STACS.2025.28,
author = {Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel and Wang, Jiaheng},
title = {{Can You Link Up With Treewidth?}},
booktitle = {42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
pages = {28:1--28:24},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-365-2},
ISSN = {1868-8969},
year = {2025},
volume = {327},
editor = {Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.28},
URN = {urn:nbn:de:0030-drops-228534},
doi = {10.4230/LIPIcs.STACS.2025.28},
annote = {Keywords: subgraph isomorphism, constraint satisfaction problems, linkage capacity, exponential-time hypothesis, parameterized complexity, counting complexity}
}
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
Jonathan Spreer and Stephan Tillmann. The Trisection Genus of Standard Simply Connected PL 4-Manifolds. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 71:1-71:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{spreer_et_al:LIPIcs.SoCG.2018.71,
author = {Spreer, Jonathan and Tillmann, Stephan},
title = {{The Trisection Genus of Standard Simply Connected PL 4-Manifolds}},
booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)},
pages = {71:1--71:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-066-8},
ISSN = {1868-8969},
year = {2018},
volume = {99},
editor = {Speckmann, Bettina and T\'{o}th, Csaba D.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.71},
URN = {urn:nbn:de:0030-drops-87847},
doi = {10.4230/LIPIcs.SoCG.2018.71},
annote = {Keywords: combinatorial topology, triangulated manifolds, simply connected 4-manifolds, K3 surface, trisections of 4-manifolds}
}