3 Search Results for "Tortora de Falco, Lorenzo"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic

Authors: Lê Thành Dũng Nguyễn and Pierre Pradic

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We give a characterization of star-free languages in a λ-calculus with support for non-commutative affine types (in the sense of linear logic), via the algebraic characterization of the former using aperiodic monoids. When the type system is made commutative, we show that we get regular languages instead. A key ingredient in our approach – that it shares with higher-order model checking – is the use of Church encodings for inputs and outputs. Our result is, to our knowledge, the first use of non-commutativity in implicit computational complexity.

Cite as

Lê Thành Dũng Nguyễn and Pierre Pradic. Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 135:1-135:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.ICALP.2020.135,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng and Pradic, Pierre},
  title =	{{Implicit Automata in Typed \lambda-Calculi I: Aperiodicity in a Non-Commutative Logic}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{135:1--135:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.135},
  URN =		{urn:nbn:de:0030-drops-125426},
  doi =		{10.4230/LIPIcs.ICALP.2020.135},
  annote =	{Keywords: Church encodings, ordered linear types, star-free languages}
}
Document
Glueability of Resource Proof-Structures: Inverting the Taylor Expansion

Authors: Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures.

Cite as

Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco. Glueability of Resource Proof-Structures: Inverting the Taylor Expansion. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{guerrieri_et_al:LIPIcs.CSL.2020.24,
  author =	{Guerrieri, Giulio and Pellissier, Luc and Tortora de Falco, Lorenzo},
  title =	{{Glueability of Resource Proof-Structures: Inverting the Taylor Expansion}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.24},
  URN =		{urn:nbn:de:0030-drops-116674},
  doi =		{10.4230/LIPIcs.CSL.2020.24},
  annote =	{Keywords: linear logic, Taylor expansion, proof-net, natural transformation}
}
Document
Computing Connected Proof(-Structure)s From Their Taylor Expansion

Authors: Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
We show that every connected Multiplicative Exponential Linear Logic (MELL) proof-structure (with or without cuts) is uniquely determined by a well-chosen element of its Taylor expansion: the one obtained by taking two copies of the content of each box. As a consequence, the relational model is injective with respect to connected MELL proof-structures.

Cite as

Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco. Computing Connected Proof(-Structure)s From Their Taylor Expansion. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{guerrieri_et_al:LIPIcs.FSCD.2016.20,
  author =	{Guerrieri, Giulio and Pellissier, Luc and Tortora de Falco, Lorenzo},
  title =	{{Computing Connected Proof(-Structure)s From Their Taylor Expansion}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.20},
  URN =		{urn:nbn:de:0030-drops-60031},
  doi =		{10.4230/LIPIcs.FSCD.2016.20},
  annote =	{Keywords: proof-nets, (differential) linear logic, relational model, Taylor expansion}
}
  • Refine by Author
  • 2 Guerrieri, Giulio
  • 2 Pellissier, Luc
  • 2 Tortora de Falco, Lorenzo
  • 1 Nguyễn, Lê Thành Dũng
  • 1 Pradic, Pierre

  • Refine by Classification
  • 2 Theory of computation → Linear logic
  • 1 Theory of computation → Algebraic language theory

  • Refine by Keyword
  • 2 Taylor expansion
  • 1 (differential) linear logic
  • 1 Church encodings
  • 1 linear logic
  • 1 natural transformation
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2020
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail