107 Search Results for "Lu, Hsueh-I"


Document
Complete Volume
OASIcs, Volume 116, PARMA-DITAM 2024, Complete Volume

Authors: João Bispo, Sotirios Xydis, Serena Curzel, and Luís Miguel Sousa

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
OASIcs, Volume 116, PARMA-DITAM 2024, Complete Volume

Cite as

15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 1-88, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{bispo_et_al:OASIcs.PARMA-DITAM.2024,
  title =	{{OASIcs, Volume 116, PARMA-DITAM 2024, Complete Volume}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{1--88},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024},
  URN =		{urn:nbn:de:0030-drops-196938},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024},
  annote =	{Keywords: OASIcs, Volume 116, PARMA-DITAM 2024, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: João Bispo, Sotirios Xydis, Serena Curzel, and Luís Miguel Sousa

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bispo_et_al:OASIcs.PARMA-DITAM.2024.0,
  author =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{0:i--0:x},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.0},
  URN =		{urn:nbn:de:0030-drops-196947},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
High-Level Synthesis Developments in the Context of European Space Technology Research (Invited Talk)

Authors: Fabrizio Ferrandi, Michele Fiorito, Claudio Barone, Giovanni Gozzi, and Serena Curzel

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
European efforts to boost competitiveness in the space services sector promote the research and development of advanced software and hardware solutions. The EU-funded HERMES project contributes to the effort by qualifying radiation-hardened, high-performance programmable microprocessors and developing a software ecosystem that facilitates the deployment of complex applications on such platforms. The main objectives of the project include reaching a technology readiness level of 6 (i.e., validated and demonstrated in relevant environment) for the rad-hard NG-ULTRA FPGA with its ceramic hermetic package CGA 1752, developed within projects of the European Space Agency, French National Centre for Space Studies and the European Union. An equally important share of the project is dedicated to the development and validation of tools that support multicore software programming and FPGA acceleration. The HERMES project selected the Bambu High-Level Synthesis tool to integrate capabilities to translate C/C++ code into Verilog/VHDL in its development ecosystem. In HERMES, Bambu has been and will be extended to support new FPGA targets, architectural models, model-based design, and input applications. The increased performance offered by FPGAs is thus made available also to software developers who do not have hardware design expertise.

Cite as

Fabrizio Ferrandi, Michele Fiorito, Claudio Barone, Giovanni Gozzi, and Serena Curzel. High-Level Synthesis Developments in the Context of European Space Technology Research (Invited Talk). In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 1:1-1:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferrandi_et_al:OASIcs.PARMA-DITAM.2024.1,
  author =	{Ferrandi, Fabrizio and Fiorito, Michele and Barone, Claudio and Gozzi, Giovanni and Curzel, Serena},
  title =	{{High-Level Synthesis Developments in the Context of European Space Technology Research}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{1:1--1:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.1},
  URN =		{urn:nbn:de:0030-drops-196951},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.1},
  annote =	{Keywords: High-Level Synthesis, rad-hard FPGAs}
}
Document
Accelerator-Driven Data Arrangement to Minimize Transformers Run-Time on Multi-Core Architectures

Authors: Alireza Amirshahi, Giovanni Ansaloni, and David Atienza

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
The increasing complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption. Hardware acceleration tackles the ensuing challenges by designing processors and accelerators tailored for transformer models, supporting their computation hotspots with high efficiency. However, memory bandwidth can hinder improvements in hardware accelerators. Against this backdrop, in this paper we propose a novel memory arrangement strategy, governed by the hardware accelerator’s kernel size, which effectively minimizes off-chip data access. This arrangement is particularly beneficial for end-to-end transformer model inference, where most of the computation is based on general matrix multiplication (GEMM) operations. Additionally, we address the overhead of non-GEMM operations in transformer models within the scope of this memory data arrangement. Our study explores the implementation and effectiveness of the proposed accelerator-driven data arrangement approach in both single- and multi-core systems. Our evaluation demonstrates that our approach can achieve up to a 2.7x speed increase when executing inferences employing state-of-the-art transformers.

Cite as

Alireza Amirshahi, Giovanni Ansaloni, and David Atienza. Accelerator-Driven Data Arrangement to Minimize Transformers Run-Time on Multi-Core Architectures. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{amirshahi_et_al:OASIcs.PARMA-DITAM.2024.2,
  author =	{Amirshahi, Alireza and Ansaloni, Giovanni and Atienza, David},
  title =	{{Accelerator-Driven Data Arrangement to Minimize Transformers Run-Time on Multi-Core Architectures}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{2:1--2:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.2},
  URN =		{urn:nbn:de:0030-drops-196960},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.2},
  annote =	{Keywords: Memory arrangement, Data layout, Hardware accelerators, Transformer models, Multi-core, System simulation}
}
Document
Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory

Authors: Andreas Grapentin, Felix Eberhardt, Tobias Zagorni, Andreas Polze, Michele Gazzetti, and Christian Pinto

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
We propose a new live-migration paradigm for virtual machines called zero-copy migration. By making the working set of the virtual machine available on the destination host through transparently byte-addressable disaggregated memory, we remove the need for a pre-copy phase while simultaneously reducing the performance impact of the post-copy phase. We describe an open-source implementation of the proposed paradigm based on QEMU-KVM and libvirt, and we evaluate the efficiency of the approach with a deployment on a functional hardware prototype of a memory disaggregation system realized using ThymesisFlow. Using a series of configurable benchmarks, we show that the lead time and blackout time of the migration are equal to best-case scenarios of traditional pre-copy, post-copy and hybrid approaches. Key performance metrics from the perspective of applications running in the virtual machine, such as memory latency and throughput, are improved by up to three orders of magnitude, increasing both flexibility and responsiveness of live-migrations in the datacenter.

Cite as

Andreas Grapentin, Felix Eberhardt, Tobias Zagorni, Andreas Polze, Michele Gazzetti, and Christian Pinto. Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grapentin_et_al:OASIcs.PARMA-DITAM.2024.3,
  author =	{Grapentin, Andreas and Eberhardt, Felix and Zagorni, Tobias and Polze, Andreas and Gazzetti, Michele and Pinto, Christian},
  title =	{{Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{3:1--3:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.3},
  URN =		{urn:nbn:de:0030-drops-196972},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.3},
  annote =	{Keywords: disaggregation, disaggregated memory, vm live migration, thymesisflow, power9, opencapi, performance evaluation, zero copy}
}
Document
Precision Tuning the Rust Memory-Safe Programming Language

Authors: Gabriele Magnani, Lev Denisov, Daniele Cattaneo, Giovanni Agosta, and Stefano Cherubin

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
Precision tuning is an increasingly common approach for exploiting the tradeoff between energy efficiency or speedup, and accuracy. Its effectiveness is particularly strong whenever the maximum performance must be extracted from a computing system, such as embedded platforms. In these contexts, current engineering practice sees a dominance of memory-unsafe programming languages such as C and C++. However, the unsafe nature of these languages has come under great scrutiny as it leads to significant software vulnerabilities. Hence, safer programming languages which prevent memory-related bugs by design have been proposed as a replacement. Amongst these safer programming languages, one of the most popular has been Rust. In this work we adapt a state-of-the-art precision tuning tool, TAFFO, to operate on Rust code. By porting the PolyBench/C benchmark suite to Rust, we show that the effectiveness of the precision tuning is not affected by the use of a safer programming language, and moreover the safety properties of the language can be successfully preserved. Specifically, using TAFFO and Rust we achieved up to a 15× speedup over the base Rust code, thanks to the use of precision tuning.

Cite as

Gabriele Magnani, Lev Denisov, Daniele Cattaneo, Giovanni Agosta, and Stefano Cherubin. Precision Tuning the Rust Memory-Safe Programming Language. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{magnani_et_al:OASIcs.PARMA-DITAM.2024.4,
  author =	{Magnani, Gabriele and Denisov, Lev and Cattaneo, Daniele and Agosta, Giovanni and Cherubin, Stefano},
  title =	{{Precision Tuning the Rust Memory-Safe Programming Language}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{4:1--4:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.4},
  URN =		{urn:nbn:de:0030-drops-196989},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.4},
  annote =	{Keywords: Approximate Computing, Memory Safety, Precision Tuning}
}
Document
Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Authors: Oliver Oey, Michael Huebner, Timo Stripf, and Juergen Becker

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
In this paper, we present a method for optimizing C code for embedded multi-core systems using cross-layer parallelization. The method has two phases. The first is to develop the algorithm without any optimization for the target platform. Then, the second step is to optimize and parallelize the code across four defined layers which are the algorithm, code, task, and data layers, for efficient execution on the target hardware. Each layer is focused on selected hardware characteristics. By using an iterative approach, individual kernels and composite algorithms can be very well adapted to execution on the hardware without further adaptation of the algorithm itself. The realization of this cross-layer parallelization consists of algorithm recognition, code transformations, task distribution, and insertion of synchronization and communication statements. The method is evaluated first on a common kernel and then on a sample image processing algorithm to showcase the benefits of the approach. Compared to other methods that only rely on two or three of these layers, 20 to 30 % of additional performance gain can be achieved.

Cite as

Oliver Oey, Michael Huebner, Timo Stripf, and Juergen Becker. Embedded Multi-Core Code Generation with Cross-Layer Parallelization. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oey_et_al:OASIcs.PARMA-DITAM.2024.5,
  author =	{Oey, Oliver and Huebner, Michael and Stripf, Timo and Becker, Juergen},
  title =	{{Embedded Multi-Core Code Generation with Cross-Layer Parallelization}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{5:1--5:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.5},
  URN =		{urn:nbn:de:0030-drops-196990},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.5},
  annote =	{Keywords: Parallelization, multi-core Processors, model-based Development, Code Generation}
}
Document
Accelerating Large-Scale Graph Processing with FPGAs: Lesson Learned and Future Directions

Authors: Marco Procaccini, Amin Sahebi, Marco Barbone, Wayne Luk, Georgi Gaydadjiev, and Roberto Giorgi

Published in: OASIcs, Volume 116, 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)


Abstract
Processing graphs on a large scale presents a range of difficulties, including irregular memory access patterns, device memory limitations, and the need for effective partitioning in distributed systems, all of which can lead to performance problems on traditional architectures such as CPUs and GPUs. To address these challenges, recent research emphasizes the use of Field-Programmable Gate Arrays (FPGAs) within distributed frameworks, harnessing the power of FPGAs in a distributed environment for accelerated graph processing. This paper examines the effectiveness of a multi-FPGA distributed architecture in combination with a partitioning system to improve data locality and reduce inter-partition communication. Utilizing Hadoop at a higher level, the framework maps the graph to the hardware, efficiently distributing pre-processed data to FPGAs. The FPGA processing engine, integrated into a cluster framework, optimizes data transfers, using offline partitioning for large-scale graph distribution. A first evaluation of the framework is based on the popular PageRank algorithm, which assigns a value to each node in a graph based on its importance. In the realm of large-scale graphs, the single FPGA solution outperformed the GPU solution that were restricted by memory capacity and surpassing CPU speedup by 26x compared to 12x. Moreover, when a single FPGA device was limited due to the size of the graph, our performance model showed that a distributed system with multiple FPGAs could increase performance by around 12x. This highlights the effectiveness of our solution for handling large datasets that surpass on-chip memory restrictions.

Cite as

Marco Procaccini, Amin Sahebi, Marco Barbone, Wayne Luk, Georgi Gaydadjiev, and Roberto Giorgi. Accelerating Large-Scale Graph Processing with FPGAs: Lesson Learned and Future Directions. In 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). Open Access Series in Informatics (OASIcs), Volume 116, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{procaccini_et_al:OASIcs.PARMA-DITAM.2024.6,
  author =	{Procaccini, Marco and Sahebi, Amin and Barbone, Marco and Luk, Wayne and Gaydadjiev, Georgi and Giorgi, Roberto},
  title =	{{Accelerating Large-Scale Graph Processing with FPGAs: Lesson Learned and Future Directions}},
  booktitle =	{15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024)},
  pages =	{6:1--6:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-307-2},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{116},
  editor =	{Bispo, Jo\~{a}o and Xydis, Sotirios and Curzel, Serena and Sousa, Lu{\'\i}s Miguel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2024.6},
  URN =		{urn:nbn:de:0030-drops-197003},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2024.6},
  annote =	{Keywords: Graph processing, Distributed computing, Grid partitioning, FPGA, Accelerators}
}
Document
Modular Choreographies: Bridging Alice and Bob Notation to Java

Authors: Luís Cruz-Filipe, Anne Madsen, Fabrizio Montesi, and Marco Peressotti

Published in: OASIcs, Volume 111, Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022)


Abstract
We present Modular Choreographies, a new choreographic programming language that features modular functions. Modular Choreographies is aimed at simplicity: its communication abstraction follows the simple tradition from the "Alice and Bob" notation. We develop a compiler toolchain that translates choreographies into modular Java libraries, which developers can use to participate correctly in choreographies. The key novelty is to compile through the Choral language, which was previously proposed to define object-oriented choreographies: our toolchain compiles Modular Choreographies to Choral, and then leverages the existing Choral compiler to generate Java code. Our work is the first to bridge the simplicity of traditional choreographic programming languages with the requirement of generating modular libraries in a mainstream language (Java).

Cite as

Luís Cruz-Filipe, Anne Madsen, Fabrizio Montesi, and Marco Peressotti. Modular Choreographies: Bridging Alice and Bob Notation to Java. In Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022). Open Access Series in Informatics (OASIcs), Volume 111, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:OASIcs.Microservices.2020-2022.3,
  author =	{Cruz-Filipe, Lu{\'\i}s and Madsen, Anne and Montesi, Fabrizio and Peressotti, Marco},
  title =	{{Modular Choreographies: Bridging Alice and Bob Notation to Java}},
  booktitle =	{Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices 2020/2022)},
  pages =	{3:1--3:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-306-5},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{111},
  editor =	{Dorai, Gokila and Gabbrielli, Maurizio and Manzonetto, Giulio and Osmani, Aomar and Prandini, Marco and Zavattaro, Gianluigi and Zimmermann, Olaf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2020-2022.3},
  URN =		{urn:nbn:de:0030-drops-194650},
  doi =		{10.4230/OASIcs.Microservices.2020-2022.3},
  annote =	{Keywords: Choreographic Programming, Choreographies, Modularity}
}
Document
Normative Reasoning for AI (Dagstuhl Seminar 23151)

Authors: Agata Ciabattoni, John F. Horty, Marija Slavkovik, Leendert van der Torre, and Aleks Knoks

Published in: Dagstuhl Reports, Volume 13, Issue 4 (2023)


Abstract
Normative reasoning is reasoning about normative matters - such as obligations, permissions, and the rights of individuals or groups. It is prevalent in both legal and ethical discourse, and it can - and arguably should - play a crucial role in the construction of autonomous agents. We often find it important to know whether specific norms apply in a given situation, and to understand why and when they apply, and why some other norms do not apply. In most cases, our reasons for wanting to know are purely practical - we want to make the correct decision - but they can also be more theoretical - as they are when we engage in theoretical ethics. Either way, the same questions are crucial for designing autonomous agents sensitive to legal, ethical, and social norms. This Dagstuhl Seminar brought together experts in computer science, logic (including deontic logic and argumentation), philosophy, ethics, and law with the aim of finding effective ways of formalizing norms and embedding normative reasoning in AI systems. We discussed new ways of using deontic logic and argumentation to provide explanations answering normative why questions, including such questions as "Why should I do A (rather than B)?", "Why should you do A (rather than I)?", "Why do you have the right to do A despite a certain fact or a certain norm?", and "Why does one normative system forbid me to do A, while another one allows it?". We also explored the use of formal methods in combination with sub-symbolic AI (or Machine Learning) with a view towards designing autonomous agents that can follow (legal, ethical, and social) norms.

Cite as

Agata Ciabattoni, John F. Horty, Marija Slavkovik, Leendert van der Torre, and Aleks Knoks. Normative Reasoning for AI (Dagstuhl Seminar 23151). In Dagstuhl Reports, Volume 13, Issue 4, pp. 1-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{ciabattoni_et_al:DagRep.13.4.1,
  author =	{Ciabattoni, Agata and Horty, John F. and Slavkovik, Marija and van der Torre, Leendert and Knoks, Aleks},
  title =	{{Normative Reasoning for AI (Dagstuhl Seminar 23151)}},
  pages =	{1--23},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{13},
  number =	{4},
  editor =	{Ciabattoni, Agata and Horty, John F. and Slavkovik, Marija and van der Torre, Leendert and Knoks, Aleks},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.13.4.1},
  URN =		{urn:nbn:de:0030-drops-192367},
  doi =		{10.4230/DagRep.13.4.1},
  annote =	{Keywords: deontic logic, autonomous agents, AI ethics, deontic explanations}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
Short Paper
Automated Assessment of Simple Web Applications (Short Paper)

Authors: Luís Maia Costa, José Paulo Leal, and Ricardo Queirós

Published in: OASIcs, Volume 112, 4th International Computer Programming Education Conference (ICPEC 2023)


Abstract
Web programming education is an important component of modern computer science curricula. Assessing students’ web programming skills can be time-consuming and challenging for educators. This paper introduces Webpal, an automated assessment tool for web programming exercises in entry-level courses. Webpal evaluates web applications coded in HTML, CSS, and Javascript, and provides feedback to students. This tool integrates with Virtual Learning Environments (VLEs) through an API, allowing the creation, storage, and access to exercises while assessing student attempts based on the created exercises. The evaluation process comprises various subcomponents: static assessment, interface matching, functional testing, and feedback management. This approach aims to provide feedback that helps students overcome their challenges in web programming assignments. This paper also presents a demo showcasing the tool’s features and functionality in a simulated VLE environment.

Cite as

Luís Maia Costa, José Paulo Leal, and Ricardo Queirós. Automated Assessment of Simple Web Applications (Short Paper). In 4th International Computer Programming Education Conference (ICPEC 2023). Open Access Series in Informatics (OASIcs), Volume 112, pp. 11:1-11:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{costa_et_al:OASIcs.ICPEC.2023.11,
  author =	{Costa, Lu{\'\i}s Maia and Leal, Jos\'{e} Paulo and Queir\'{o}s, Ricardo},
  title =	{{Automated Assessment of Simple Web Applications}},
  booktitle =	{4th International Computer Programming Education Conference (ICPEC 2023)},
  pages =	{11:1--11:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-290-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{112},
  editor =	{Peixoto de Queir\'{o}s, Ricardo Alexandre and Teixeira Pinto, M\'{a}rio Paulo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2023.11},
  URN =		{urn:nbn:de:0030-drops-185072},
  doi =		{10.4230/OASIcs.ICPEC.2023.11},
  annote =	{Keywords: Web Applications, Static Assessment, Interface Matching, Functional Assessment, Feedback Manager}
}
Document
Now It Compiles! Certified Automatic Repair of Uncompilable Protocols

Authors: Luís Cruz-Filipe and Fabrizio Montesi

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Choreographic programming is a paradigm where developers write the global specification (called choreography) of a communicating system, and then a correct-by-construction distributed implementation is compiled automatically. Unfortunately, it is possible to write choreographies that cannot be compiled, because of issues related to an agreement property known as knowledge of choice. This forces programmers to reason manually about implementation details that may be orthogonal to the protocol that they are writing. Amendment is an automatic procedure for repairing uncompilable choreographies. We present a formalisation of amendment from the literature, built upon an existing formalisation of choreographic programming. However, in the process of formalising the expected properties of this procedure, we discovered a subtle counterexample that invalidates the original published and peer-reviewed pen-and-paper theory. We discuss how using a theorem prover led us to both finding the issue, and stating and proving a correct formulation of the properties of amendment.

Cite as

Luís Cruz-Filipe and Fabrizio Montesi. Now It Compiles! Certified Automatic Repair of Uncompilable Protocols. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:LIPIcs.ITP.2023.11,
  author =	{Cruz-Filipe, Lu{\'\i}s and Montesi, Fabrizio},
  title =	{{Now It Compiles! Certified Automatic Repair of Uncompilable Protocols}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.11},
  URN =		{urn:nbn:de:0030-drops-183867},
  doi =		{10.4230/LIPIcs.ITP.2023.11},
  annote =	{Keywords: choreographic programming, theorem proving, compilation, program repair}
}
Document
POSIX Lexing with Bitcoded Derivatives

Authors: Chengsong Tan and Christian Urban

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Sulzmann and Lu describe a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated to regular expressions. Their algorithm generates POSIX values which encode the information of how a regular expression matches a string - that is, which part of the string is matched by which part of the regular expression. This information is needed in the context of lexing in order to extract and to classify tokens. The purpose of the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They also help with designing an "aggressive" simplification function that keeps the size of derivatives finitely bounded. Without simplification the size of some derivatives can grow arbitrarily big, resulting in an extremely slow lexing algorithm. In this paper we describe a variant of Sulzmann and Lu’s algorithm: Our variant is a recursive functional program, whereas Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our variant is correct and generates unique POSIX values (no such proof has been given for the original algorithm by Sulzmann and Lu); we also (ii) establish finite bounds for the size of our derivatives.

Cite as

Chengsong Tan and Christian Urban. POSIX Lexing with Bitcoded Derivatives. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{tan_et_al:LIPIcs.ITP.2023.27,
  author =	{Tan, Chengsong and Urban, Christian},
  title =	{{POSIX Lexing with Bitcoded Derivatives}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{27:1--27:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.27},
  URN =		{urn:nbn:de:0030-drops-184027},
  doi =		{10.4230/LIPIcs.ITP.2023.27},
  annote =	{Keywords: POSIX matching and lexing, derivatives of regular expressions, Isabelle/HOL}
}
Document
Modular Compilation for Higher-Order Functional Choreographies

Authors: Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Choreographic programming is a paradigm for concurrent and distributed software, whereby descriptions of the intended communications (choreographies) are automatically compiled into distributed code with strong safety and liveness properties (e.g., deadlock-freedom). Recent efforts tried to combine the theories of choreographic programming and higher-order functional programming, in order to integrate the benefits of the former with the modularity of the latter. However, they do not offer a satisfactory theory of compilation compared to the literature, because of important syntactic and semantic shortcomings: compilation is not modular (editing a part might require recompiling everything) and the generated code can perform unexpected global synchronisations. In this paper, we find that these shortcomings are not mere coincidences. Rather, they stem from genuine new challenges posed by the integration of choreographies and functions: knowing which participants are involved in a choreography becomes nontrivial, and divergence in applications requires rethinking how to prove the semantic correctness of compilation. We present a novel theory of compilation for functional choreographies that overcomes these challenges, based on types and a careful design of the semantics of choreographies and distributed code. The result: a modular notion of compilation, which produces code that is deadlock-free and correct (it operationally corresponds to its source choreography).

Cite as

Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti. Modular Compilation for Higher-Order Functional Choreographies. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 7:1-7:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cruzfilipe_et_al:LIPIcs.ECOOP.2023.7,
  author =	{Cruz-Filipe, Lu{\'\i}s and Graversen, Eva and Lugovi\'{c}, Lovro and Montesi, Fabrizio and Peressotti, Marco},
  title =	{{Modular Compilation for Higher-Order Functional Choreographies}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{7:1--7:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.7},
  URN =		{urn:nbn:de:0030-drops-182005},
  doi =		{10.4230/LIPIcs.ECOOP.2023.7},
  annote =	{Keywords: Choreographies, Concurrency, \lambda-calculus, Type Systems}
}
  • Refine by Author
  • 7 Cruz-Filipe, Luís
  • 6 Gonçalo Oliveira, Hugo
  • 6 Montesi, Fabrizio
  • 5 Coheur, Luísa
  • 5 Espírito Santo, José
  • Show More...

  • Refine by Classification
  • 10 Computing methodologies → Natural language processing
  • 6 Software and its engineering → Compilers
  • 6 Theory of computation → Type theory
  • 5 Software and its engineering → Development frameworks and environments
  • 5 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 5 Front Matter
  • 5 Preface
  • 5 Table of Contents
  • 4 Conference Organization
  • 3 Microservices
  • Show More...

  • Refine by Type
  • 107 document

  • Refine by Publication Year
  • 47 2019
  • 11 2023
  • 10 2020
  • 9 2021
  • 8 2024
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail