Search Results

Documents authored by Blažej, Václav


Document
Constrained and Ordered Level Planarity Parameterized by the Number of Levels

Authors: Václav Blažej, Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The problem Level Planarity asks for a crossing-free drawing of a graph in the plane such that vertices are placed at prescribed y-coordinates (called levels) and such that every edge is realized as a y-monotone curve. In the variant Constrained Level Planarity (CLP), each level y is equipped with a partial order ≺_y on its vertices and in the desired drawing the left-to-right order of vertices on level y has to be a linear extension of ≺_y. Ordered Level Planarity (OLP) corresponds to the special case of CLP where the given partial orders ≺_y are total orders. Previous results by Brückner and Rutter [SODA 2017] and Klemz and Rote [ACM Trans. Alg. 2019] state that both CLP and OLP are NP-hard even in severely restricted cases. In particular, they remain NP-hard even when restricted to instances whose width (the maximum number of vertices that may share a common level) is at most two. In this paper, we focus on the other dimension: we study the parameterized complexity of CLP and OLP with respect to the height (the number of levels). We show that OLP parameterized by the height is complete with respect to the complexity class XNLP, which was first studied by Elberfeld, Stockhusen, and Tantau [Algorithmica 2015] (under a different name) and recently made more prominent by Bodlaender, Groenland, Nederlof, and Swennenhuis [FOCS 2021]. It contains all parameterized problems that can be solved nondeterministically in time f(k)⋅ n^O(1) and space f(k)⋅ log n (where f is a computable function, n is the input size, and k is the parameter). If a problem is XNLP-complete, it lies in XP, but is W[t]-hard for every t. In contrast to the fact that OLP parameterized by the height lies in XP, it turns out that CLP is NP-hard even when restricted to instances of height 4. We complement this result by showing that CLP can be solved in polynomial time for instances of height at most 3.

Cite as

Václav Blažej, Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink. Constrained and Ordered Level Planarity Parameterized by the Number of Levels. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 20:1-20:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blazej_et_al:LIPIcs.SoCG.2024.20,
  author =	{Bla\v{z}ej, V\'{a}clav and Klemz, Boris and Klesen, Felix and Sieper, Marie Diana and Wolff, Alexander and Zink, Johannes},
  title =	{{Constrained and Ordered Level Planarity Parameterized by the Number of Levels}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{20:1--20:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.20},
  URN =		{urn:nbn:de:0030-drops-199652},
  doi =		{10.4230/LIPIcs.SoCG.2024.20},
  annote =	{Keywords: Parameterized Complexity, Graph Drawing, XNLP, XP, W\lbrackt\rbrack-hard, Level Planarity, Planar Poset Diagram, Computational Geometry}
}
Document
On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations

Authors: Václav Blažej, Pratibha Choudhary, Dušan Knop, Šimon Schierreich, Ondřej Suchý, and Tomáš Valla

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
For many problems, the important instances from practice possess certain structure that one should reflect in the design of specific algorithms. As data reduction is an important and inextricable part of today’s computation, we employ one of the most successful models of such precomputation - the kernelization. Within this framework, we focus on Traveling Salesperson Problem (TSP) and some of its generalizations. We provide a kernel for TSP with size polynomial in either the feedback edge set number or the size of a modulator to constant-sized components. For its generalizations, we also consider other structural parameters such as the vertex cover number and the size of a modulator to constant-sized paths. We complement our results from the negative side by showing that the existence of a polynomial-sized kernel with respect to the fractioning number, the combined parameter maximum degree and treewidth, and, in the case of {Subset TSP}, modulator to disjoint cycles (i.e., the treewidth two graphs) is unlikely.

Cite as

Václav Blažej, Pratibha Choudhary, Dušan Knop, Šimon Schierreich, Ondřej Suchý, and Tomáš Valla. On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blazej_et_al:LIPIcs.ESA.2022.22,
  author =	{Bla\v{z}ej, V\'{a}clav and Choudhary, Pratibha and Knop, Du\v{s}an and Schierreich, \v{S}imon and Such\'{y}, Ond\v{r}ej and Valla, Tom\'{a}\v{s}},
  title =	{{On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.22},
  URN =		{urn:nbn:de:0030-drops-169600},
  doi =		{10.4230/LIPIcs.ESA.2022.22},
  annote =	{Keywords: Traveling Salesperson, Subset TSP, Waypoint Routing, Kernelization}
}