Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)
Julian Dörfler and Christian Ikenmeyer. Functional Closure Properties of Finite ℕ-Weighted Automata. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 134:1-134:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{dorfler_et_al:LIPIcs.ICALP.2024.134, author = {D\"{o}rfler, Julian and Ikenmeyer, Christian}, title = {{Functional Closure Properties of Finite \mathbb{N}-Weighted Automata}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {134:1--134:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.134}, URN = {urn:nbn:de:0030-drops-202777}, doi = {10.4230/LIPIcs.ICALP.2024.134}, annote = {Keywords: Finite automata, weighted automata, counting, closure properties, algebraic varieties} }
Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)
Markus Bläser, Julian Dörfler, and Christian Ikenmeyer. On the Complexity of Evaluating Highest Weight Vectors. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 29:1-29:36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{blaser_et_al:LIPIcs.CCC.2021.29, author = {Bl\"{a}ser, Markus and D\"{o}rfler, Julian and Ikenmeyer, Christian}, title = {{On the Complexity of Evaluating Highest Weight Vectors}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {29:1--29:36}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.29}, URN = {urn:nbn:de:0030-drops-143036}, doi = {10.4230/LIPIcs.CCC.2021.29}, annote = {Keywords: Algebraic complexity theory, geometric complexity theory, algebraic branching program, Waring rank, border Waring rank, representation theory, highest weight vector, treewidth} }
Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)
Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 26:1-26:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{dorfler_et_al:LIPIcs.MFCS.2019.26, author = {D\"{o}rfler, Julian and Roth, Marc and Schmitt, Johannes and Wellnitz, Philip}, title = {{Counting Induced Subgraphs: An Algebraic Approach to #W\lbrack1\rbrack-hardness}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {26:1--26:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.26}, URN = {urn:nbn:de:0030-drops-109703}, doi = {10.4230/LIPIcs.MFCS.2019.26}, annote = {Keywords: counting complexity, edge-transitive graphs, graph homomorphisms, induced subgraphs, parameterized complexity} }
Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Julian Dörfler, Christian Ikenmeyer, and Greta Panova. On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 51:1-51:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{dorfler_et_al:LIPIcs.ICALP.2019.51, author = {D\"{o}rfler, Julian and Ikenmeyer, Christian and Panova, Greta}, title = {{On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {51:1--51:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.51}, URN = {urn:nbn:de:0030-drops-106276}, doi = {10.4230/LIPIcs.ICALP.2019.51}, annote = {Keywords: Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions} }
Feedback for Dagstuhl Publishing