Search Results

Documents authored by Dardha, Ornela


Document
Separating Sessions Smoothly

Authors: Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
This paper introduces Hypersequent GV (HGV), a modular and extensible core calculus for functional programming with session types that enjoys deadlock freedom, confluence, and strong normalisation. HGV exploits hyper-environments, which are collections of type environments, to ensure that structural congruence is type preserving. As a consequence we obtain a tight operational correspondence between HGV and HCP, a hypersequent-based process-calculus interpretation of classical linear logic. Our translations from HGV to HCP and vice-versa both preserve and reflect reduction. HGV scales smoothly to support Girard’s Mix rule, a crucial ingredient for channel forwarding and exceptions.

Cite as

Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. Separating Sessions Smoothly. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fowler_et_al:LIPIcs.CONCUR.2021.36,
  author =	{Fowler, Simon and Kokke, Wen and Dardha, Ornela and Lindley, Sam and Morris, J. Garrett},
  title =	{{Separating Sessions Smoothly}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.36},
  URN =		{urn:nbn:de:0030-drops-144138},
  doi =		{10.4230/LIPIcs.CONCUR.2021.36},
  annote =	{Keywords: session types, hypersequents, linear lambda calculus}
}
Document
Artifact
Multiparty Session Types for Safe Runtime Adaptation in an Actor Language (Artifact)

Authors: Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay

Published in: DARTS, Volume 7, Issue 2, Special Issue of the 35th European Conference on Object-Oriented Programming (ECOOP 2021)


Abstract
This is the companion artifact for the paper "Multiparty Session Types for Safe Runtime Adaptation in an Actor Language". EnsembleS is an actor-based programming language supporting dynamic self-adaptation, (discovery, replacement, and communication), which also guarantees communication safety. The artifact includes the EnsembleS compiler, the modified StMungo code, and all examples contained within the paper.

Cite as

Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types for Safe Runtime Adaptation in an Actor Language (Artifact). In Special Issue of the 35th European Conference on Object-Oriented Programming (ECOOP 2021). Dagstuhl Artifacts Series (DARTS), Volume 7, Issue 2, pp. 8:1-8:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Article{harvey_et_al:DARTS.7.2.8,
  author =	{Harvey, Paul and Fowler, Simon and Dardha, Ornela and Gay, Simon J.},
  title =	{{Multiparty Session Types for Safe Runtime Adaptation in an Actor Language (Artifact)}},
  pages =	{8:1--8:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2021},
  volume =	{7},
  number =	{2},
  editor =	{Harvey, Paul and Fowler, Simon and Dardha, Ornela and Gay, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.7.2.8},
  URN =		{urn:nbn:de:0030-drops-140327},
  doi =		{10.4230/DARTS.7.2.8},
  annote =	{Keywords: Concurrency, session types, adaptation, actors, trust}
}
Document
Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Authors: Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay

Published in: LIPIcs, Volume 194, 35th European Conference on Object-Oriented Programming (ECOOP 2021)


Abstract
Human fallibility, unpredictable operating environments, and the heterogeneity of hardware devices are driving the need for software to be able to adapt as seen in the Internet of Things or telecommunication networks. Unfortunately, mainstream programming languages do not readily allow a software component to sense and respond to its operating environment, by discovering, replacing, and communicating with components that are not part of the original system design, while maintaining static correctness guarantees. In particular, if a new component is discovered at runtime, there is no guarantee that its communication behaviour is compatible with existing components. We address this problem by using multiparty session types with explicit connection actions, a type formalism used to model distributed communication protocols. By associating session types with software components, the discovery process can check protocol compatibility and, when required, correctly replace components without jeopardising safety. We present the design and implementation of EnsembleS, the first actor-based language with adaptive features and a static session type system, and apply it to a case study based on an adaptive DNS server. We formalise the type system of EnsembleS and prove the safety of well-typed programs, making essential use of recent advances in non-classical multiparty session types.

Cite as

Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types for Safe Runtime Adaptation in an Actor Language. In 35th European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 194, pp. 10:1-10:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{harvey_et_al:LIPIcs.ECOOP.2021.10,
  author =	{Harvey, Paul and Fowler, Simon and Dardha, Ornela and Gay, Simon J.},
  title =	{{Multiparty Session Types for Safe Runtime Adaptation in an Actor Language}},
  booktitle =	{35th European Conference on Object-Oriented Programming (ECOOP 2021)},
  pages =	{10:1--10:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-190-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{194},
  editor =	{M{\o}ller, Anders and Sridharan, Manu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2021.10},
  URN =		{urn:nbn:de:0030-drops-140539},
  doi =		{10.4230/LIPIcs.ECOOP.2021.10},
  annote =	{Keywords: Concurrency, session types, adaptation}
}
Document
A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming (Artifact)

Authors: Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida

Published in: DARTS, Volume 3, Issue 2, Special Issue of the 31st European Conference on Object-Oriented Programming (ECOOP 2017)


Abstract
This artifact contains a version of the Scribble tool that, given a protocol specification with multiple participants, can generate Scala APIs for implementing each participant in a type-safe, protocol-abiding way. Crucially, the API generation leverages a decomposition of the multiparty protocol into type-safe peer-to-peer interactions between pairs of participants; and this, in turn, allows to implement the API internals on top of the existing lchannels library for type-safe binary session programming. As a result, several technically challenging aspects in the implementation of multiparty sessions are solved "for free", at the underlying binary level. This includes distributed multiparty session delegation: this artifact implements it for the first time.

Cite as

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming (Artifact). In Special Issue of the 31st European Conference on Object-Oriented Programming (ECOOP 2017). Dagstuhl Artifacts Series (DARTS), Volume 3, Issue 2, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{scalas_et_al:DARTS.3.2.3,
  author =	{Scalas, Alceste and Dardha, Ornela and Hu, Raymond and Yoshida, Nobuko},
  title =	{{A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming (Artifact)}},
  pages =	{3:1--3:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2017},
  volume =	{3},
  number =	{2},
  editor =	{Scalas, Alceste and Dardha, Ornela and Hu, Raymond and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.3.2.3},
  URN =		{urn:nbn:de:0030-drops-72847},
  doi =		{10.4230/DARTS.3.2.3},
  annote =	{Keywords: process calculi, session types, concurrent programming, Scala}
}
Document
A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming

Authors: Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida

Published in: LIPIcs, Volume 74, 31st European Conference on Object-Oriented Programming (ECOOP 2017)


Abstract
Multiparty Session Types (MPST) is a typing discipline for message-passing distributed processes that can ensure properties such as absence of communication errors and deadlocks, and protocol conformance. Can MPST provide a theoretical foundation for concurrent and distributed programming in "mainstream" languages? We address this problem by (1) developing the first encoding of a full-fledged multiparty session pi-calculus into linear pi-calculus, and (2) using the encoding as the foundation of a practical toolchain for safe multiparty programming in Scala. Our encoding is type-preserving and operationally sound and complete. Crucially, it keeps the distributed choreographic nature of MPST, illuminating that the safety properties of multiparty sessions can be precisely represented with a decomposition into binary linear channels. Previous works have only studied the relation between (limited) multiparty and binary sessions via centralised orchestration means. We exploit these results to implement an automated generation of Scala APIs for multiparty sessions, abstracting existing libraries for binary communication channels. This allows multiparty systems to be safely implemented over binary message transports, as commonly found in practice. Our implementation is the first to support distributed multiparty delegation: our encoding yields it for free, via existing mechanisms for binary delegation.

Cite as

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming. In 31st European Conference on Object-Oriented Programming (ECOOP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 74, pp. 24:1-24:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{scalas_et_al:LIPIcs.ECOOP.2017.24,
  author =	{Scalas, Alceste and Dardha, Ornela and Hu, Raymond and Yoshida, Nobuko},
  title =	{{A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming}},
  booktitle =	{31st European Conference on Object-Oriented Programming (ECOOP 2017)},
  pages =	{24:1--24:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-035-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{74},
  editor =	{M\"{u}ller, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2017.24},
  URN =		{urn:nbn:de:0030-drops-72637},
  doi =		{10.4230/LIPIcs.ECOOP.2017.24},
  annote =	{Keywords: process calculi, session types, concurrent programming, Scala}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail