Search Results

Documents authored by Frati, Fabrizio


Document
Weakly Leveled Planarity with Bounded Span

Authors: Michael A. Bekos, Giordano Da Lozzo, Fabrizio Frati, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Ignaz Rutter, and Ioannis G. Tollis

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
This paper studies planar drawings of graphs in which each vertex is represented as a point along a sequence of horizontal lines, called levels, and each edge is either a horizontal segment or a strictly y-monotone curve. A graph is s-span weakly leveled planar if it admits such a drawing where the edges have span at most s; the span of an edge is the number of levels it touches minus one. We investigate the problem of computing s-span weakly leveled planar drawings from both the computational and the combinatorial perspectives. We prove the problem to be para-NP-hard with respect to its natural parameter s and investigate its complexity with respect to widely used structural parameters. We show the existence of a polynomial-size kernel with respect to vertex cover number and prove that the problem is FPT when parameterized by treedepth. We also present upper and lower bounds on the span for various graph classes. Notably, we show that cycle trees, a family of 2-outerplanar graphs generalizing Halin graphs, are Θ(log n)-span weakly leveled planar and 4-span weakly leveled planar when 3-connected. As a byproduct of these combinatorial results, we obtain improved bounds on the edge-length ratio of the graph families under consideration.

Cite as

Michael A. Bekos, Giordano Da Lozzo, Fabrizio Frati, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Ignaz Rutter, and Ioannis G. Tollis. Weakly Leveled Planarity with Bounded Span. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.GD.2024.19,
  author =	{Bekos, Michael A. and Da Lozzo, Giordano and Frati, Fabrizio and Gupta, Siddharth and Kindermann, Philipp and Liotta, Giuseppe and Rutter, Ignaz and Tollis, Ioannis G.},
  title =	{{Weakly Leveled Planarity with Bounded Span}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{19:1--19:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.19},
  URN =		{urn:nbn:de:0030-drops-213035},
  doi =		{10.4230/LIPIcs.GD.2024.19},
  annote =	{Keywords: Leveled planar graphs, edge span, graph drawing, edge-length ratio}
}
Document
Upward Pointset Embeddings of Planar st-Graphs

Authors: Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let S ⊂ ℝ² be a pointset with |S| = |V(G)|. An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in 𝒪(n^{4k}) time with 𝒪(n^{3k}) space, and to enumerate all UPSEs of G on S with 𝒪(n) worst-case delay, using 𝒪(k n^{4k} log n) space, after 𝒪(k n^{4k} log n) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in 𝒪(n log n) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with 𝒪(n) worst-case delay, using 𝒪(n²) space, after 𝒪(n²) set-up time.

Cite as

Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward Pointset Embeddings of Planar st-Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alegria_et_al:LIPIcs.GD.2024.24,
  author =	{Alegr{\'\i}a, Carlos and Caroppo, Susanna and Da Lozzo, Giordano and D'Elia, Marco and Di Battista, Giuseppe and Frati, Fabrizio and Grosso, Fabrizio and Patrignani, Maurizio},
  title =	{{Upward Pointset Embeddings of Planar st-Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.24},
  URN =		{urn:nbn:de:0030-drops-213082},
  doi =		{10.4230/LIPIcs.GD.2024.24},
  annote =	{Keywords: Upward pointset embeddings, planar st-graphs, st-cutset, non-crossing monotone Hamiltonian cycles, graph drawing enumeration}
}
Document
Parameterized Algorithms for Upward Planarity

Authors: Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We obtain new parameterized algorithms for the classical problem of determining whether a directed acyclic graph admits an upward planar drawing. Our results include a new fixed-parameter algorithm parameterized by the number of sources, an XP-algorithm parameterized by treewidth, and a fixed-parameter algorithm parameterized by treedepth. All three algorithms are obtained using a novel framework for the problem that combines SPQR tree-decompositions with parameterized techniques. Our approach unifies and pushes beyond previous tractability results for the problem on series-parallel digraphs, single-source digraphs and outerplanar digraphs.

Cite as

Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov. Parameterized Algorithms for Upward Planarity. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chaplick_et_al:LIPIcs.SoCG.2022.26,
  author =	{Chaplick, Steven and Di Giacomo, Emilio and Frati, Fabrizio and Ganian, Robert and Raftopoulou, Chrysanthi N. and Simonov, Kirill},
  title =	{{Parameterized Algorithms for Upward Planarity}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.26},
  URN =		{urn:nbn:de:0030-drops-160349},
  doi =		{10.4230/LIPIcs.SoCG.2022.26},
  annote =	{Keywords: Upward planarity, parameterized algorithms, SPQR trees, treewidth, treedepth}
}
Document
On Planar Greedy Drawings of 3-Connected Planar Graphs

Authors: Giordano Da Lozzo, Anthony D'Angelo, and Fabrizio Frati

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
A graph drawing is greedy if, for every ordered pair of vertices (x,y), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination "greedily" forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra's result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture.

Cite as

Giordano Da Lozzo, Anthony D'Angelo, and Fabrizio Frati. On Planar Greedy Drawings of 3-Connected Planar Graphs. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dalozzo_et_al:LIPIcs.SoCG.2017.33,
  author =	{Da Lozzo, Giordano and D'Angelo, Anthony and Frati, Fabrizio},
  title =	{{On Planar Greedy Drawings of 3-Connected Planar Graphs}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.33},
  URN =		{urn:nbn:de:0030-drops-72095},
  doi =		{10.4230/LIPIcs.SoCG.2017.33},
  annote =	{Keywords: Greedy drawings, 3-connectivity, planar graphs, convex drawings}
}
Document
Optimal Morphs of Convex Drawings

Authors: Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, and Vincenzo Roselli

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.

Cite as

Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, and Vincenzo Roselli. Optimal Morphs of Convex Drawings. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 126-140, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.SOCG.2015.126,
  author =	{Angelini, Patrizio and Da Lozzo, Giordano and Frati, Fabrizio and Lubiw, Anna and Patrignani, Maurizio and Roselli, Vincenzo},
  title =	{{Optimal Morphs of Convex Drawings}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{126--140},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.126},
  URN =		{urn:nbn:de:0030-drops-51333},
  doi =		{10.4230/LIPIcs.SOCG.2015.126},
  annote =	{Keywords: Convex Drawings, Planar Graphs, Morphing, Geometric Representations}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail